Mathematics-6.Unit-07-Progression & Series-Test With Soultion
1. ASSIGNMENT SOLUTION
1. (A) The rth term of the series is given by Tr = (n –r + 1)r
Sum of the series =
⇒ Sn =
⇒ Sn= =
2. (B)
3. (A) a1, a2 , a3 , . .. . . . , an are in H. P. Then are in A.P.
⇒ = d (say) . . . . (1)
⇒
a1a2 + a2a3 + a3a4 + . . . . + an-1an = (a1 -an) . .. . . (2)
If we add all (n-1) terms of (1), we get
d ⇒ .
Thus from (2) a1a2 + a2a3 + a3a4 +. . .. . . . + an-1an = ( n-1)a1an .
4. (C)
5. (B) Sn = 5n2 + 2n, Sn –1 = 5(n –1)2 + 2(n –1)
⇒ Tn = Sn –Sn –1 = 10n –3 ⇒ T2 = 20 –3 = 17
6. (B) 2
7. (B) Let Sn and be sum of n terms of two series then
⇒ a1 = 1, d1 = 1, a2 = 2, d2 = 1 ⇒ .
8. (C) Let b = ar, c = a
For triangle ABC,
a + b > c
a + ar > a
- r – 1 < 0
< r <
Also, b + c > a
a (r + ) > a
+ r – 1 > 0
r
Finally, a + c > b
a [1 + ) > ar
- r + 1 > 0.
which is true for all values of r.
In this case ‘r’ can not be negative
r
9. (C) Given that a, b, c are in G.P
⇒ b2 = ac ⇒ 2 logx b = logx a + logx c
⇒ ⇒ loga x, logb x, logc x are in H.P.
10. (A) Using A.M. H.M.
we get > b, a + c > 2b
and > c, b + d > 2c
a + c + b + d > 2b + 2c
a + d > b + c
11. (B) The series can be written as
S = (1 + 3 + 5 + 7 + …..n/2 terms) + (4 + 6 + 8 + 10 + …..n/2 terms)
S = = [n] + [8 + n –2]
= =
12. (B, D) It is easy to see that Δ = (b2 –ac)(aα2 +2bα +c) .
Hence Δ =0 if a, b, c are in G.P. or α is a root of ax2 +2bx +c = 0.
13. (A) If n is odd, n-1 is even. Sum of (n-1) terms will be .
The nth term will be n2. Hence the required sum
= +n2 =
14. (B)
= 6 + (4d + 9d + 14d + 19d + 23d)
= 3 (2 + 23d)
= 225 (given)
Now, (2 + 23d)
= 12 75 = 900
15. (A) The rth A. P. has first term r and common difference 2r – 1. Hence sum of its n terms = .
The required sum =
= = = .
16. (C)
=
=
= (say)
( .5 + 5 + 9)
= 15
Clearly, is the point of minima for f( )
d =
17. (B) Let the first five terms of the given G.P. be a1 , a2 , a3 , a4, a5 .
Hence a3 = 4 . Now a1 a5 = a2 a4 = a32 ⇒ a1 a2 a3 a4 a5 = 45.
18. (D) Let the numbers be a1, a2, a3, . . ., an. Then a1.a2.a3 . .….an =1.
Using A.M. ≥ G.M , we get
⇒ a1 + a2 + a3 + . . . . + an ≥ n
19. (C) a, b, c are in H.P. ⇒ b = ⇒ ⇒ . . . . (A)
Again a, b, c are in H.P.
⇒ b = ⇒ ⇒ . . . . (B)
From (A) and (B) = 2.
20. (C, D) Let α be the first and β be the (2n-1) terns of an A.P. , G.P. and H.P. , then α, a, β will be in A.P. , α, b, β will be G.P. α, c, β will be in H.P.
Hence a, b, c are respectively A. M. , G.M. and H.M. of and .
Since A.M. ≥ G.M. ≥H.M. , a ≥ b ≥ c.
Again a = , b2 = αβ and c = . Hence ac-b2 =0.
21. (A) Using A. M. ≥ G. M. ⇒ ≥ 3.
22. (D) 2b = a + c
8 = = + + 3ac (a + c)
8 = + + 3ac(2b)
+ - 8 = -6 abc
23. (A) S = … ∞ =
=
24. (B)
25/26. Sn =
= = 6 = Ans. of 25 question
Now, S∞ = Sn = = = 6 Ans. of 26 question
27. (A) ⇒ − 2 = 0
28. (A) a = a1 + (p − 1) d … (1)
b = a1 + (q − 1) d … (2)
where a1 is the first term and d is the common difference of the A.P.
Now, a − b = (p − q) d ⇒ d =
and a + b = 2 a1 + (p + q − 2) d = 2 a1 + (p + q − 1) d − d … (3)
Sp+q = [2 a1 + (p + q − 1) d] = [a + b + d]
=
29. (C) Let ‘A’ be first term and ‘r’ be the common ratio. Then
a =
term
30. (C) S = + … ∞ =
=
2. TEST SOLUTION
1. (B) Let the first term be ‘a’ and common ratio be ‘r’
4 = a
Required product = a. ar. a .a .a
= .
=
2. (B) 2 b = a + c ⇒ b − c = a − b … (1)
⇒
⇒ {using equation (1)}
⇒ = ⇒ b
⇒ b (a + c) = − a c ⇒ b2 = { 2 b = a + c} ⇒ − , b, c are in G.P.
3. (A)
=
4. (C) Since b is the H.M. of a and c, > b (A.M. > H.M.)
Again c is the H.M. of b and d , > c ( A.M. > H.M.)
Adding, we get + > b+c ⇒ a + d > b+ c.
5. (D) a + b + c = 18
2. + 3. + 4. = 18
Using weighted A.M. and G.M. inequality, we get
6. (B)
9 =
3 =
7. (C) 1 − , 1, 1 + are in A.P.
⇒ are in A.P.
⇒ are in A.P.
8. (A) b
ac
abc = 4
9. (B) Let S (n) be the sum of the integers divisible by n from 1 to 100 then
S (2) = 2 + 4 + … + 100 = 2 {1 + 2 + 3 … + 50} = 50 × 51 = 2550
S (5) = 5 + 10 + … + 100 = 5 {1 + 2 + … + 20} = = 1050
S (10) = 10 + 20 + … + 100 = 10 {1 + 2 + … + 10} = = 550
Now S (2 ∪ 5) = S (2) + S (5) − S (2 ∩ 5) = S (2) + S (5) − S (10)
= 2550 + 1050 − 550 = 3050
10. (B) (2x − 1)2 = 2. (2x + 3) ⇒ 22x − 4. 2x − 5 = 0
⇒ (2x − 5) (2x + 1) = 0 ⇒ 2x + 1 ≠ 0 so 2x − 5 = 0 ⇒ x = log2 5
11. (C) 2b = a + c, c =
2bd = c(b + d) = (a + c)d
bc + cd = ad + cd
bc = ad
12. (B) ax = by = cz ⇒ x log a = y log b = z log c = k
⇒ x = , y = , z =
now ⇒ 2 log b = log a + log c ⇒ b2 = ac
13. (B) (2a + (3n – 1)d)
(2a + (n – 2)d)
= (2a (3n – n + 1) + d (3n(3n – 1) – (n – 1)(n – 2))
= (2a (2n + 1) + d(8 – 2))
= a(2n + 1) + d (4 – 1)
= (2n + 1) (a + (2n – 1)d)
= a + (2n – 1)d
= (2n + 1)
14. (A) Tr =
Sn = = = =
15. (C)
⇒
16. (A) Since a, b, c are in A.P., therefore
are also in A.P.
will also be in A.P.
17. (C) S = 2.357357357… = 2 + .357357
1000 S = 2357.357357 … = 2357 + .357357 …
1000 S = 2357 + S − 2 ⇒ 9995 = 2355 ⇒ S =
18. (B) If x, y, z are in GP then log x, log y, log z are in A.P.
i.e. log x + 1, log y + 1, log z + 1 are in A.P. i.e. are in H.P.
19. (B)
20. (A) S = 5sinx−1 + 5−sinx−1 =
now 5sinx + ≥ 2 ⇒ s ≥
21. (D) S = 5 + 7 + 11 + 17 + 25 + …. +
S = 5 + 7 + 11 + 17 + …. + +
0 = 5 + 2 + 4 + 6 + 8 …. -
= 5 + 2[1 + 2 + 3 + 4 + …. + (n – 1) terms]
= 5 + 2 n
= n(n – 1) + 5
S =
= ( - n + 5)
= + 5n
= (2 + 28)
22. (D) log4 x + log4 + log4 + … + log4 = log2 x
⇒ log4 x = log2 x
⇒ 1 + = 2 {Let n = 2k}
⇒ = 2 ⇒ = 0 ⇒ 2k = ∞ ⇒ n = ∞
23. (C) are in A.P.
⇒ are in A.P.
⇒ are in A.P.
⇒ are in A.P.
⇒ are in A.P.
⇒ a, b, c are in H.P.
24. (B) ab + bc + cd = b(a + c) + cd
= 2ac + cd
= c(2a + d)
25. (A) Let S = 1 + 2 + 3 + 4 + 5 + … + 2n − 1
Now 1 + 2 + 3 + 4 + … 2n = = n (2n + 1)
⇒ S + 2 + 4 + 6 + … + 2n = n (2n + 1)
⇒ S + 2 {1 + 2 + 3 + … + n} = n (2n + 1)
⇒ S + n (n + 1) = n (2n + 1) ⇒ S = n2
26. (C) If 1 + a + a2 + … + an = (1 + a) (1 + a2) (1 + a4) then value of n will be the highest power of a, which will be 4 + 2 + 1 = 7
27. (C) T(r) = 1 -
T(r) =
= n -
= n – 1 +
28. (C) S = … n terms = … n terms
= (1 + 1 + 1 + … n terms) −
= n − = n − 1 + = 2−n + n − 1
29. (D) S = 1 + 2 + … + n … (1)
S = + 2 + … + (n − 1) + n … (2)
Subtracting
− + n
− + n = n − n + n
⇒ S = n2
30. (A) S = + + + … 10 terms
S = [1 + 31/2 + 3 + 33/2 + …… 10 terms]
S = = 121 ( + )
Comments
Post a Comment