Mathematics-6.Unit-07-Progression & Series-Test With Soultion

1. ASSIGNMENT SOLUTION 1. (A) The rth term of the series is given by Tr = (n –r + 1)r Sum of the series = ⇒ Sn = ⇒ Sn= = 2. (B) 3. (A) a1, a2 , a3 , . .. . . . , an are in H. P. Then are in A.P. ⇒ = d (say) . . . . (1) ⇒ a1a2 + a2a3 + a3a4 + . . . . + an-1an = (a1 -an) . .. . . (2) If we add all (n-1) terms of (1), we get d ⇒ . Thus from (2) a1a2 + a2a3 + a3a4 +. . .. . . . + an-1an = ( n-1)a1an . 4. (C) 5. (B) Sn = 5n2 + 2n, Sn –1 = 5(n –1)2 + 2(n –1) ⇒ Tn = Sn –Sn –1 = 10n –3 ⇒ T2 = 20 –3 = 17 6. (B) 2 7. (B) Let Sn and be sum of n terms of two series then ⇒ a1 = 1, d1 = 1, a2 = 2, d2 = 1 ⇒ . 8. (C) Let b = ar, c = a For triangle ABC, a + b > c a + ar > a - r – 1 < 0 < r < Also, b + c > a a (r + ) > a + r – 1 > 0 r Finally, a + c > b a [1 + ) > ar - r + 1 > 0. which is true for all values of r. In this case ‘r’ can not be negative r 9. (C) Given that a, b, c are in G.P ⇒ b2 = ac ⇒ 2 logx b = logx a + logx c ⇒ ⇒ loga x, logb x, logc x are in H.P. 10. (A) Using A.M. H.M. we get > b, a + c > 2b and > c, b + d > 2c a + c + b + d > 2b + 2c a + d > b + c 11. (B) The series can be written as S = (1 + 3 + 5 + 7 + …..n/2 terms) + (4 + 6 + 8 + 10 + …..n/2 terms) S = = [n] + [8 + n –2] = = 12. (B, D) It is easy to see that Δ = (b2 –ac)(aα2 +2bα +c) . Hence Δ =0 if a, b, c are in G.P. or α is a root of ax2 +2bx +c = 0. 13. (A) If n is odd, n-1 is even. Sum of (n-1) terms will be . The nth term will be n2. Hence the required sum = +n2 = 14. (B) = 6 + (4d + 9d + 14d + 19d + 23d) = 3 (2 + 23d) = 225 (given) Now, (2 + 23d) = 12 75 = 900 15. (A) The rth A. P. has first term r and common difference 2r – 1. Hence sum of its n terms = . The required sum = = = = . 16. (C) = = = (say) ( .5 + 5 + 9) = 15 Clearly, is the point of minima for f( ) d = 17. (B) Let the first five terms of the given G.P. be a1 , a2 , a3 , a4, a5 . Hence a3 = 4 . Now a1 a5 = a2 a4 = a32 ⇒ a1 a2 a3 a4 a5 = 45. 18. (D) Let the numbers be a1, a2, a3, . . ., an. Then a1.a2.a3 . .….an =1. Using A.M. ≥ G.M , we get ⇒ a1 + a2 + a3 + . . . . + an ≥ n 19. (C) a, b, c are in H.P. ⇒ b = ⇒ ⇒ . . . . (A) Again a, b, c are in H.P. ⇒ b = ⇒ ⇒ . . . . (B) From (A) and (B) = 2. 20. (C, D) Let α be the first and β be the (2n-1) terns of an A.P. , G.P. and H.P. , then α, a, β will be in A.P. , α, b, β will be G.P. α, c, β will be in H.P. Hence a, b, c are respectively A. M. , G.M. and H.M. of  and . Since A.M. ≥ G.M. ≥H.M. , a ≥ b ≥ c. Again a = , b2 = αβ and c = . Hence ac-b2 =0. 21. (A) Using A. M. ≥ G. M. ⇒ ≥ 3. 22. (D) 2b = a + c 8 = = + + 3ac (a + c) 8 = + + 3ac(2b) + - 8 = -6 abc 23. (A) S = … ∞ = = 24. (B) 25/26. Sn = = = 6 = Ans. of 25 question Now, S∞ = Sn = = = 6 Ans. of 26 question 27. (A) ⇒ − 2 = 0 28. (A) a = a1 + (p − 1) d … (1) b = a1 + (q − 1) d … (2) where a1 is the first term and d is the common difference of the A.P. Now, a − b = (p − q) d ⇒ d = and a + b = 2 a1 + (p + q − 2) d = 2 a1 + (p + q − 1) d − d … (3) Sp+q = [2 a1 + (p + q − 1) d] = [a + b + d] = 29. (C) Let ‘A’ be first term and ‘r’ be the common ratio. Then a = term 30. (C) S = + … ∞ = = 2. TEST SOLUTION 1. (B) Let the first term be ‘a’ and common ratio be ‘r’ 4 = a Required product = a. ar. a .a .a = . = 2. (B) 2 b = a + c ⇒ b − c = a − b … (1) ⇒ ⇒ {using equation (1)} ⇒ = ⇒ b ⇒ b (a + c) = − a c ⇒ b2 = { 2 b = a + c} ⇒ − , b, c are in G.P. 3. (A) = 4. (C) Since b is the H.M. of a and c, > b (A.M. > H.M.) Again c is the H.M. of b and d , > c ( A.M. > H.M.) Adding, we get + > b+c ⇒ a + d > b+ c. 5. (D) a + b + c = 18 2. + 3. + 4. = 18 Using weighted A.M. and G.M. inequality, we get 6. (B) 9 = 3 = 7. (C) 1 − , 1, 1 + are in A.P. ⇒ are in A.P. ⇒ are in A.P. 8. (A) b ac abc = 4 9. (B) Let S (n) be the sum of the integers divisible by n from 1 to 100 then S (2) = 2 + 4 + … + 100 = 2 {1 + 2 + 3 … + 50} = 50 × 51 = 2550 S (5) = 5 + 10 + … + 100 = 5 {1 + 2 + … + 20} = = 1050 S (10) = 10 + 20 + … + 100 = 10 {1 + 2 + … + 10} = = 550 Now S (2 ∪ 5) = S (2) + S (5) − S (2 ∩ 5) = S (2) + S (5) − S (10) = 2550 + 1050 − 550 = 3050 10. (B) (2x − 1)2 = 2. (2x + 3) ⇒ 22x − 4. 2x − 5 = 0 ⇒ (2x − 5) (2x + 1) = 0 ⇒ 2x + 1 ≠ 0 so 2x − 5 = 0 ⇒ x = log2 5 11. (C) 2b = a + c, c = 2bd = c(b + d) = (a + c)d bc + cd = ad + cd bc = ad 12. (B) ax = by = cz ⇒ x log a = y log b = z log c = k ⇒ x = , y = , z = now ⇒ 2 log b = log a + log c ⇒ b2 = ac 13. (B) (2a + (3n – 1)d) (2a + (n – 2)d) = (2a (3n – n + 1) + d (3n(3n – 1) – (n – 1)(n – 2)) = (2a (2n + 1) + d(8 – 2)) = a(2n + 1) + d (4 – 1) = (2n + 1) (a + (2n – 1)d) = a + (2n – 1)d = (2n + 1) 14. (A) Tr = Sn = = = = 15. (C) ⇒ 16. (A) Since a, b, c are in A.P., therefore are also in A.P. will also be in A.P. 17. (C) S = 2.357357357… = 2 + .357357 1000 S = 2357.357357 … = 2357 + .357357 … 1000 S = 2357 + S − 2 ⇒ 9995 = 2355 ⇒ S = 18. (B) If x, y, z are in GP then log x, log y, log z are in A.P. i.e. log x + 1, log y + 1, log z + 1 are in A.P. i.e. are in H.P. 19. (B) 20. (A) S = 5sinx−1 + 5−sinx−1 = now 5sinx + ≥ 2 ⇒ s ≥ 21. (D) S = 5 + 7 + 11 + 17 + 25 + …. + S = 5 + 7 + 11 + 17 + …. + + 0 = 5 + 2 + 4 + 6 + 8 …. - = 5 + 2[1 + 2 + 3 + 4 + …. + (n – 1) terms] = 5 + 2 n = n(n – 1) + 5 S = = ( - n + 5) = + 5n = (2 + 28) 22. (D) log4 x + log4 + log4 + … + log4 = log2 x ⇒ log4 x = log2 x ⇒ 1 + = 2 {Let n = 2k} ⇒ = 2 ⇒ = 0 ⇒ 2k = ∞ ⇒ n = ∞ 23. (C) are in A.P. ⇒ are in A.P. ⇒ are in A.P. ⇒ are in A.P. ⇒ are in A.P. ⇒ a, b, c are in H.P. 24. (B) ab + bc + cd = b(a + c) + cd = 2ac + cd = c(2a + d) 25. (A) Let S = 1 + 2 + 3 + 4 + 5 + … + 2n − 1 Now 1 + 2 + 3 + 4 + … 2n = = n (2n + 1) ⇒ S + 2 + 4 + 6 + … + 2n = n (2n + 1) ⇒ S + 2 {1 + 2 + 3 + … + n} = n (2n + 1) ⇒ S + n (n + 1) = n (2n + 1) ⇒ S = n2 26. (C) If 1 + a + a2 + … + an = (1 + a) (1 + a2) (1 + a4) then value of n will be the highest power of a, which will be 4 + 2 + 1 = 7 27. (C) T(r) = 1 - T(r) = = n - = n – 1 + 28. (C) S = … n terms = … n terms = (1 + 1 + 1 + … n terms) − = n − = n − 1 + = 2−n + n − 1 29. (D) S = 1 + 2 + … + n … (1) S = + 2 + … + (n − 1) + n … (2) Subtracting − + n − + n = n − n + n ⇒ S = n2 30. (A) S = + + + … 10 terms S = [1 + 31/2 + 3 + 33/2 + …… 10 terms] S = = 121 ( + )

Comments

Popular posts from this blog

Planning to start your own coaching institute for JEE, NEET, CBSE or Foundation? Here's why not to waste time in developing study material from scratch. Instead use the readymade study material to stay focused on quality of teaching as quality of teaching is the primary job in coaching profession while study material is secondary one. Quality of teaching determines results of your coaching that decides success & future of your coaching while good quality study material is merely a necessary teaching aid that supplements your teaching (video in Hindi)

Physics-30.24-Physics-Solids and Semiconductors

Physics-31.Rotational Mechanics