Mathematics-5.Unit-3.03-Matrices and Determinants Test
1. The value of is :
(A) ( − 5) (B) 5 ( − 5)
(C) 5 ( + 5) (D) 5 ( − 5)
2. is equal to :
(A) constant other than zero (B) zero
(C) 100 (D) –1997
3. If a + b +c > 0 and a ≠ b ≠ c ≠ 0, then Δ = then :
(A) Δ > 0 (B) Δ < 0
(C) Δ = 0 (D) Data insufficient
4. The determinant is equal to zero if :
(A) a, b, c are in A.P. (B) a, b, c are in G.P.
(C) a, b, c are in H.P. (D) none of these
5. The determinant is divisible by :
(A) 1 + x (B) (1 + x)2
(C) x2 (D) none of these
6. is equal to :
(A) a positive number (B) a negative number
(C) Zero (D) none of these
7. If f(x) = , then dx is equal to :
(A) 1/4 (B) –1/3
(C) 1/2 (D) 1
8. For positive numbers x, y, z, the numerical value of the determinant is :
(A) 0 (B) 1
(C) 2 (D) none of these
9. = is equal to :
(A) p + q (B) a + b + c
(C) x + y + z (D) 0
10. is equal to :
(A) abc (B) a2b2c2
(C) ab + bc + ca (D) 0
11. is equal to :
(A) 0 (B) 1
(C) –1 (D) none of these
12. If f (x) = then f (100) is equal to :
(A) 0 (B) 1
(C) 100 (D) –100
13. is equal to :
(A) 1 + ∑a2 (B) ∑a2
(C) (∑a)2 (D) ∑a
14. If A, B, C are the angles of a triangle and , then is equal to:
(A) constant other than zero (B) not a constant
(C) 0 (D) none of these
15. If [.] denotes the greatest integer less than or equal to the real number under consideration and –1 ≤ x < 0; 0 ≤ y < 1 and 1 ≤ z < 2, then the value of the determinant is :
(A) [z] (B) [y]
(C) [x] (D) none of these
16. If = = 0, then the non zero root of the equation is :
(A) a+b +c (B) abc
(C) – a – b –c (D) None of these
17. If f (x) = then the value of f(x) dx is equal to :
(A) 0 (B) 1
(C) 2 (D) none of these
18. If A = , then A2 is equal to
(A) unit matrix (B) null matrix
(C) A (D) –A
19. If A′ is the transpose of a square matrix A, then
(A) |A| ≠ |A′| (B) |A| = |A′|
(C) |A| + |A′| = 0 (D) |A| = |A′| only when A is symmetric
20. If I = , J = and B = , then B equals
(A) I cos + J sin (B) I sin + J cos
(C) I cos – J sin (D) – I cos + J sin
21. If In is the identity matrix of order n, then (In)–1
(A) does not exist (B) equal to In
(C) equals to O (D) nIn
22. If for a matrix A, A2 + I = O where I is the identity matrix, then A equals
(A) (B)
(C) (D)
23. If A = , then A40 equals
(A) (B)
(C) (D) none of these
24 If A [aij] is a square matrix of order n n such that aii = k for all i, then trace of A is
equal to
(A) kn (B)
(C) nk (D) none of these
25. If A = and I = , then the value of k so that A2 = 8A + kI is
(A) 7 (B) − 7
(C) 0 (D) 5
26. If A = , then the value of |adj A| is
(A) a27 (B) a9
(C) a6 (D) a2
27. If A and B are symmetric matrices of order n (A ≠ B), then
(A) A + B is skew symmetric (B) A + B is symmetric
(C) A + B is a diagonal matrix (D) A + B is a zero matrix
28. If A = and B = then AB =
(A) A3 (B) B2
(C) O (D) I
29. If A = the A is
(A) idempotent (B) nilpotent
(C) symmetric (D) none of these
30. If A = , then 19A–1 is equal to
(A) A′ (B) 2A
(C) (D) A
Comments
Post a Comment