MATRICES-(E)-06-ASSIGNMENT
1. If be a diagonal matrix, then
(a) 2 (b) 0 (c) 1 (d) 3
2. Which of the following is a diagonal matrix
(a) (b) (c) (d) None of these
3. If I is a unit matrix, then will be
(a) A unit matrix (b) A triangular matrix (c) A scalar matrix (d) None of these
4. If , then the value of X where A+X is a unit matrix, is
(a) (b) (c) (d) None of these
5. If A is diagonal matrix of order , then wrong statement is
(a) , where B is a diagonal matrix of order (b) AB is a diagonal matrix
(c) (d) A is a scalar matrix
6. If and , then
(a) –2 (b) 2 (c) –4 (d) 4
7. If and , then the correct relation is
(a) (b) (c) (d) None of these
8. If and , then
(a) (b) (c) (d)
9. If , then
(a) (b) (c) (d)
10. If , then
(a) A (b) 2A (c) – A (d) –2A
11. If , then
(a) (b) (c) (d) None of these
12. If and , then
(a) (2, 3) (b) (3, 4) (c) (4, 3) (d) None of these
13. If , and and differs by , then AB =
(a) I (b) O (c) –I (d) None of these
14. If and , then AB =
(a) (b) (c) (d)
15. If and , then
(a) (b) (c) (d) None of these
16. If ,then for what value of
(a) 0 (b) (c) –1 (d) 1
17. If and , then the minimum value of n is
(a) 2 (b) 3 (c) 4 (d) 5
18. If , and AB = I, then x =
(a) –1 (b) 1 (c) 0 (d) 2
19. If and , then
(a) (b) (c) (d) None of these
20. If A=[1 2 3] and , then
(a) (b) (c) (d)
21. If and , then is
(a) Diagonal matrix (b) Null matrix (c) Unit matrix (d) None of these
22. If , then
(a) (b) (c) (d)
23. If and , then
(a) (b) (c) (d)
24. If ,then
(a) (b) (c) (d) None of these
25. If and ,then
(a) (b) (c) (d) None of these
26. If ,then is equal to
(a) (b) (c) (d)
27. If , then
(a) (b) (c) (d)
28. If and , then
(a) (b) (c) (d)
29. If and , where I and O are unit and null matrices of order 3 respectively, then
(a) (b) (c) (d)
30. If and I is the identity matrix of order 2, then
(a) I (b) O (c) (d)
31. If , then
(a) (b) (c) (d)
32. If , then
(a) (b) (c) (d)
33. If , then the value of is
(a) (b) (c) (d) None of these
34. If , then
(a) (b) (c) (d)
35. If and , then
(a) (b) (c) (d) None of these
36. If , B , then
(a) (b) (c) (d)
37. If , , then
(a) (b) (c) (d) None of these
38. If , then
(a) (b) (c) (d)
39. If , , then
(a) (b) (c) (d)
40. If , I is the unit matrix of order 2 and a, b are arbitrary constants, then is equal to
(a) (b) (c) (d) None of these
41. If , , and , then
(a) 20 (b) [–20] (c) –20 (d) [20]
42. Which one of the following is not true
(a) Matrix addition is commutative (b) Matrix addition is associative
(c) Matrix multiplication is commutative (d) Matrix multiplication is associative
43. If , and , then which of the following is defined
(a) AB (b) BA (c) (d)
44. If and I is a unit matrix of 3rd order, then equals
(a) 2A (b) 4A (c) 6A (d) None of these
45. If , then equals
(a) (b) (c) (d)
46.
(a) [–1] (b) (c) (d) Not defined
47. If , then X is equal to
(a) (b) (c) (d) None of these
48. If and , then the values of are respectively
(a) –6, –12, –18 (b) –6, 4, 9 (c) –6, –4, –9 (d) –6, 12, 18
49. If , then
(a) (b) (c) (d)
50. If matrix , then
(a) (b) (c) (d)
51. If , then
(a) I (b) 14I (c) 0 (d) None of these
52. If , then
(a) (b) (c) (d) None of these
53. Which is true about matrix multiplication
(a) It is commutative (b) It is associative (c) Both (a) and (b) (d) None of these
54. If and , then PQ is equal to
(a) (b) (c) (d)
55. is equal to
(a) (b) (c) (d)
56. If , , then AB is
(a) (b) (c) (d)
57. For matrices A, B and I, if and , then A equals [AMU 1992]
(a) (b) (c) (d)
58. If , then equals
(a) A (b) 2 A (c) 3 A (d) 4 A
59. If and , then AB equals
(a) (b) (c) (d)
60. Let , , then
(a) (b) (c) (d)
61. If A, B are square matrices of order , then is equal to
(a) (b) (c) (d)
62. If and , then is equal to
(a) (b) (c) (d) None of these
63. If , , then is equal to
(a) (b) (c) (d)
64. If , and , then equals
(a) (b) (c) (d)
65. If , and , then equals
(a) (b) (c) (d)
66. If , then x and y are
(a) 1, 1 (b) 1, 2 (c) 2, 2 (d) 2, 1
67. If and , then the value of a is
(a) –2 (b) 0 (c) 2 (d) 1
68. If and , then
(a) (b) (c) (d) None of these
69. If and , then AB is equal to
(a) (b) (c) (d) None of these
70. If and , then AB equals
(a) (b) (c) (d)
71. , then A equals
(a) (b) (c) (d)
72. If , and , then which of the following is not defined [MP PET 1987]
(a) AB (b) (c) (d)
73. If a matrix B is obtained by multiplying each element of a matrix A of order by 3, then relation between A and B is
(a) (b) (c) (d)
74. For each real number x such that , let be the matrix and . Then
(a) (b) (c) (d)
75. If , then the value of is
(a) (b) (c) (d)
76. If , then
(a) (b) (c) (d)
77. If and I is the unit matrix of order 2, then equals
(a) (b) (c) (d)
78. If , then
(a) (b) (c) (d) None of these
79. If , then which of following statement is true
(a) and (b) and
(c) and (d) and
80. , if and only if
(a) (b) (c) (d) None of these
81. If , then the order of A is
(a) (b) (c) (d)
82. If , then matrices A, B, C are
(a) (b) (c) (d)
83. is a square matrix, if
(a) (b) (c) (d) None of these
84. If and , then the element of 3rd row and third column in AB will be
(a) –18 (b) 4 (c) –12 (d) None of these
85. If A and B be symmetric matrices of the same order, then will be a
(a) Symmetric matrix (b) Skew-symmetric matrix (c) Null matrix (d) None of these
86. If A and B are square matrices of order 2, then
(a) (b) (c) (d) None of these
87. If the order of the matrices A and B be and respectively, then the order of will be
(a) (b) (c) (d) None of these
88. In a lower triangular matrix element , if
(a) (b) (c) (d)
89. If A is a square matrix of order n and , where is a scalar, then
(a) (b) (c) (d)
90. Let , and . The expression which is not defined is
(a) (b) (c) (d)
91. If , and , then the correct statement is
(a) (b) (c) (d)
92. If A and B are two matrices and , then
(a) (b) (c) (d) None of these
93. If A and B are square matrices of same order, then
(a) (b) (c) (d)
94. Which of the following is incorrect
(a) (b)
(c) , where A,B commute (d)
95. Which of the following is/are incorrect
(i) Adjoint of a symmetric matrix is symmetric,
(ii) Adjoint of unit matrix is a unit matrix,
(iii) and
(iv) Adjoint of a diagonal matrix is a diagonal matrix
(a) (i) (b) (ii) (c) (iii) and (iv) (d) None of these
96. Let be a square matrix and let be cofactor of in A. If , then
(a) (b) (c) (d) None of these
97. A, B are n-rowed square matrices such that and B is non-singular. Then
(a) (b) (c) (d) None of these
98. If A and B are two matrices such that and , then
(a) 2 AB (b) 2 BA (c) (d) AB
99. If A and B are two matrices such that and AB are both defined, then
(a) A and B are two matrices not necessarily of same order
(b) A and B are square matrices of same order
(c) Number of columns of A= number of rows of B
(d) None of these
100. If and is the identity matrix, then x =
(a) 1 (b) 2 (c) 3 (d) 0
101. If , , then equals
(a) (b) (c) (d) None of these
102. If and , then is equal to
(a) (b) (c) (d) None of these
103. If A is matrix and B is a matrix such that and are both defined. Then B is of the type
(a) (b) (c) (d)
104. Which of the following is not true
(a) Every skew-symmetric matrix of odd order is non-singular
(b) If determinant of a square matrix is non-zero, then it is non-singular
(c) Adjoint of a symmetric matrix is symmetric
(d) Adjoint of a diagonal matrix is diagonal
105. Which one of the following statements is true
(a) Non-singular square matrix does not have a unique inverse (b) Determinant of a non-singular matrix is zero
(c) If , then A is a square matrix (d) If , then where
106. If matrix , then
(a) (b)
(c) (d) , where is a non-zero scalar
107. If and , then
(a) (b) (c) (d)
108. Which one of the following is correct
(a) Skew-symmetric matrix of odd order is non-singular. (b) Skew-symmetric matrix of odd order is singular
(c) Skew-symmetric matrix of even order is always singular (d) None of these
109. Choose the correct answer
(a) Every identity matrix is a scalar matrix
(b) Every scalar matrix is an identity matrix
(c) Every diagonal matrix is an identity matrix
(d) A square matrix whose each element is 1 is an identity matrix.
110. If A and B are two square matrices such that , then =
(a) 0 (b) (c) (d)
111. For a matrix A, and is true for
(a) If A is a square matrix (b) If A is a non singular matrix (c) If A is a symmetric matrix (d) If A is any matrix
112. If two matrices A and B are of order and respectively, can be subtracted only, if
(a) (b) (c) (d) None of these
113. The set of all matrices over the real numbers is not a group under matrix multiplication because
(a) Identity element does not exist (b) Closure property is not satisfied
(c) Association property is not satisfied (d) Inverse axiom may not be satisfied
114. If the matrix , then
(a) or (b) and
(c) It is not necessary that either or (d)
115. If and , then A is equal to
(a) (b) (c) (d) None of these
116. Assuming that the sums and products given below are defined, which of the following is not true for matrices
(a) (b) does not imply
(c) implies or (d)
117. Which of the following is true for matrix AB
(a) (b) (c) (d) All of these
118. If A and B are matrices such that and , then
(a) and (b) and (c) and (d) and
119. If A and B are symmetric matrices of order , then
(a) is skew symmetric (b) is symmetric
(c) is a diagonal matrix (d) is a zero matrix
120. The possible number of different order which a matrix can have when it has 24 elements is
(a) 6 (b) 8 (c) 4 (d) 10
121. If and , then minimum value of n is
(a) 2 (b) 4 (c) 5 (d) 3
122. If A, B, C are square matrices of the same order, then which of the following is true
(a) (b) (c) or (d)
123. If a matrix has 13 elements, then the possible dimensions (order) it can have are
(a) (b) (c) (d) None of these
124. If A, B, C are three matrices, then
(a) (b) (c) (d)
125. If , then =
(a) 14 (b) (c) (d) None of these
126. If , then equals
(a) (b) (c) (d) None of these
127. If and , then
(a) (b) (c) (d)
128. If and , then is equal to
(a) (b) (c) (d) None of these
129. If , then
(a) (b) (c) (d) None of these
130. Transpose of a row matrix is a
(a) Row matrix (b) Column matrix (c) A square matrix (d) A scalar matrix
131. If and , then correct statement is
(a) (b) (c) (d) None of these
132. If matrix A is of order and B is of order , then order of is equal to
(a) Order of AB (b) Order of BA (c) Order of (d) Order of
133. If , then is
(a) (b) (c) (d)
134. Let A is a skew-symmetric matrix and C is a column matrix, then is
(a) (b) (c) (d)
135. If A and B are matrices of suitable order and k is any number, then correct statement is
(a) (b) (c) (d)
136. If A and B are matrices of suitable order, then wrong statement is
(a) (b) (c) (d)
137. If A is a square matrix such that , then , where A’ is transpose of A, is equal to
(a) 0 (b) –2 (c) 1/2 (d) 2
138. An orthogonal matrix is
(a) (b) (c) (d)
139. Matrix is
(a) Orthogonal (b) Idempotent (c) Skew-symmetric (d) Symmetric
140. The inverse of a symmetric matrix is
(a) Symmetric (b) Skew-symmetric (c) Diagonal matrix (d) None of these
141. If A is a symmetric matrix and , then is
(a) Symmetric (b) Skew-symmetric (c) A diagonal matrix (d) None of these
142. If A is a skew-symmetric matrix and n is a positive integer, then is
(a) A symmetric matrix (b) Skew-symmetric matrix (c) Diagonal matrix (d) None of these
143. If is symmetric, then
(a) 3 (b) 5 (c) 2 (d) 4
144. If A is a square matrix, then is
(a) Non-singular matrix (b) Symmetric matrix (c) Skew-symmetric matrix (d) Unit matrix
145. For any square matrix A, is a
(a) Unit matrix (b) Symmetric matrix (c) Skew-symmetric matrix (d) Diagonal matrix
146. If A is a square matrix for which , then A is
(a) Zero matrix (b) Unit matrix (c) Symmetric matrix (d) Skew-symmetric matrix
147. If A is a square matrix and is symmetric matrix, then
(a) Unit matrix (b) Symmetric matrix (c) Skew-symmetric matrix (d) Zero matrix
148. The value of a for which the matrix is singular if
(a) (b) (c) (d)
149. The matrix is which of the following
(a) Symmetric (b) Skew-symmetric (c) Hermitian (d) Skew-hermitian
150. The matrix, is nilpotent of index
(a) 2 (b) 3 (c) 4 (d) 6
151. If is symmetric matrix, then
(a) (b) (c) (d)
152. The matrix is a
(a) Non-singular (b) Idempotent (c) Nilpotent (d) Orthogonal
153. For any square matrix A, which statement is wrong
(a) (b) (c) (d) None of these
154. If , then A is
(a) An upper triangular matrix (b) A null matrix
(c) A lower triangular matrix (d) None of these
155. If A is a square matrix, then A will be non-singular if
(a) (b) (c) (d)
156. The matrix is
(a) Symmetric (b) Skew-symmetric (c) Scalar (d) None of these
157. If , then is
(a) Null matrix (b) Unit matrix (c) A (d) 2A
158. If A is a symmetric matrix, then matrix is
(a) Symmetric (b) Skew-symmetric (c) Hermitian (d) Skew-Hermitian
159. If A is a square matrix, then which of the following matrices is not symmetric
(a) (b) (c) (d)
160. Square matrix will be an upper triangular matrix, if
(a) for (b) for (c) for (d) None of these
161. If the matrix is singular, then
(a) –2 (b) –1 (c) 1 (d) 2
162. In order that the matrix be non-singular, should not be equal to
(a) 1 (b) 2 (c) 3 (d) 4
163. If A is involutory matrix and and I is unit matrix of same order, then is
(a) Zero matrix (b) A (c) I (d) 2A
164. If , then A is
(a) Symmetric (b) Skew-symmetric (c) Non-singular (d) Singular
165. If , then
(a) Unit matrix (b) Null matrix (c) A (d) – A
166. If the matrix is singular, then
(a) –2 (b) 4 (c) 2 (d) –4
167. Out of the following a skew-symmetric matrix is
(a) 3 (b) 3 (c) 3 (d) 3
If 3 , then A is (a) Singular (b) Non-singular (c) Unitary (d) Symmetric
168. If A, B, C are three square matrices such that implies , then the matrix A is always
(a) A singular matrix (b) A Non-singular matrix (c) An orthogonal matrix (d) A diagonal matrix
169. The matrix is
(a) Unitary (b) Orthogonal (c) Nilpotent (d) Involutary
170. If a matrix A is symmetric as well as skew symmetric, then
(a) A is a diagonal matrix (b) A is a null matrix (c) A is a unit matrix (d) A is a triangular matrix.
171. A and B are any two square matrices. Which one of the following is a skew symmetric matrix
(a) (b) (c) (d) None of the above.
172. Choose the correct answer
(a) Every scalar matrix is an identity matrix
(b) Every identity matrix is a scalar matrix
(c) Every diagonal matrix is an identity matrix
(d) A Square matrix whose each element is 1 is an identity matrix
173. For a square matrix A, it is given that , then A is a
(a) Orthogonal matrix (b) Diagonal matrix (c) Symmetric matrix (d) None of these
174. A square matrix can always be expressed as a
(a) Sum of a symmetric matrix and a skew-symmetric matrix (b) Sum of a diagonal matrix and a symmetric matrix
(c) Skew matrix (d) Skew- symmetric matrix
175. If A is a skew-symmetric matrix and n is odd positive integer, then is
(a) A symmetric matrix (b) A skew-symmetric matrix (c) A diagonal matrix (d) None of these
176. If A, B symmetric matrices of the same order then AB – BA is
(a) Symmetric matrix (b) Skew-symmetric matrix (c) Null matrix (d) Unit matrix
177. If k is a scalar and I is a unit matrix of order 3, then
(a) (b) (c) (d)
178. If , then
(a) A (b) I (c) O (d)
179. If A is a matrix, then
(a) (b) (c) (d) None of these
180. Adjoint of the matrix is
(a) N (b) 2N (c) – N (d) None of these
181. If A is a non-singular matrix, then
(a) A (b) I (c) (d)
182. If and , then k is equal to
(a) 0 (b) 1 (c) (d)
183. Let , then the adjoint of A is
(a) (b) (c) (d) None of these
184. If , then
(a) (b) (c) (d) None of these
185. If A is a singular matrix, then is
(a) Singular (b) Non-singular (c) Symmetric (d) Not defined
186. The adjoint of is
(a) (b) (c) (d) None of these
187.
(a) (b) I (c) O (d) None of these
188. If , then
(a) (b) (c) (d) None of these
189. If , then the value of is
(a) 36 (b) 72 (c) 144 (d) None of these
190. If A is a matrix of order 3 and = 8, then
(a) 1 (b) 2 (c) (d)
191. If A and B are non-singular square matrices of same order, then is equal to
(a) (b) (c) (d)
192. If d is the determinant of a square matrix A of order n, then the determinant of its adjoint is
(a) (b) (c) (d) d
193. If , then is equal to
(a) (b) (c) (d)
194. If , then
(a) I (b) (c) (d) None of these
195. If , then is
(a) (b) (c) (d) None of these
196. The adjoint matrix of is
(a) (b) (c) (d)
197. If , then
(a) (b) (c) (d)
198. If , then the value of is
(a) (b) (c) (d)
199. If , then the value of is
(a) (b) (c) (d)
200. If , then determinant is
(a) (b) (c) (d)
201. If A is a square matrix, then is equal to
(a) (b) (c) Null matrix (d) Unit matrix
202. If , then is equal to
(a) 13 (b) – 13 (c) 5 (d) – 5
203. For a third order non-singular matrix A, equals
(a) (b) (c) (d) None of these
204. If A be a square matrix of order n and if and , then
(a) (b) (c) (d) None of these
205. Inverse of the matrix is
(a) (b) (c) (d)
206. If A and B are non-singular matrices, then
(a) (b) (c) (d)
207. If , then
(a) (b) (c) (d)
208. If , then
(a) (b) (c) (d) None of these
209. If , then
(a) (b) (c) (d) None of these
210. The element of second row and third column in the inverse of is
(a) – 2 (b) – 1 (c) 1 (d) 2
211. The inverse of the matrix is
(a) (b) (c) (d)
212. The inverse of is
(a) (b) (c) (d)
213. The inverse of the matrix is
(a) (b) (c) (d)
214. If a matrix A is such that , then its inverse is
(a) (b) (c) (d) None of these
215. If and , then
(a) (b) (c) (d)
216. If and , then
(a) (b) (c) (d) None of these
217. If , then the matrix
(a) (b) (c) (d)
218. If A is an invertible matrix, then which of the following is correct
(a) is multivalued (b) is singular (c) (d)
219. If , then =
(a) (b) (c) (d) None of these
220.
(a) (b) (c) (d)
221. If , then
(a) (b) (c) (d)
222.
(a) (b) (c) (d)
223. The inverse of matrix is
(a) A (b) (c) (d)
224. The inverse of is
(a) (b) (c) (d) None of these
225. The inverse of is
(a) (b) (c) (d) None of these
226. The matrix is invertible, if
(a) (b) (c) (d)
227. If , then is equal to
(a) (b) (c) (d)
228. The matrix is not invertible, if ‘a’ has the value
(a) 2 (b) 1 (c) 0 (d) – 1
229. Inverse matrix of
(a) (b) (c) (d)
230. If the multiplicative group of matrices of the form , for and , then the inverse of is
(a) (b) (c) (d) Does not exist
231. The element in the first row and third column of the inverse of the matrix is
(a) – 2 (b) 0 (c) 1 (d) 7
232. If is the identity matrix of order 3, then is
(a) 0 (b) (c) (d) Does not exist
233. If a matrix A is such that , then equals
(a) (b) (c) (d)
234. If and , then
(a) (b) (c) (d)
235. If , then
(a) (b) (c) (d)
236. If , then
(a) (b) (c) (d) Does not exist
237. If for the matrix A, , then
(a) (b) (c) A (d) None of these
238. For two invertible matrices A and B of suitable orders, the value of is
(a) (b) (c) (d)
239. If and , , then
(a) (b) (c) (d)
240. If , then
(a) (b) (c) (d)
241. If and , then
(a) (b) (c) (d)
242. The multiplicative inverse of matrix is
(a) (b) (c) (d)
243. The inverse matrix of is
(a) (b) (c) (d)
244. Inverse of the matrix is
(a) (b) (c) (d)
245. If A is an orthogonal matrix, then is equal to
(a) A (b) (c) (d) None of these
246. The multiplicative inverse of the matrix is
(a) (b) (c) (d)
247. Let A be an invertible matrix. Which of the following is not true
(a) (b) (c) (d) None of these
248. Inverse of is
(a) (b) (c) (d) None of these
249. If , then
(a) (b) (c) (d)
250. If , and , then is equal to
(a) (b) (c) (d)
251. If for a square matrix A, , then A is
(a) Orthogonal matrix (b) Symmetric matrix (c) Diagonal matrix (d) Invertible matrix
252. If matrix is invertible, then
(a) (b) (c) (d)
253. If , then
(a) (b) (c) (d) None of these
254. If , then
(a) (b) (c) (d)
255. If is a cube root of unity and , then
(a) (b) (c) (d)
256. If , then
(a) A (b) (c) (d)
257. If , where for all , then is equal to
(a) D (b) (c) I (d) None of these
258. If , then is equal to
(a) diag (b) diag
(c) A (d) None of these
259. If A is a square matrix of order 3, then true statement is (where I is unit matrix)
(a) det (b) det A = 0 (c) det (d) det 2A = 2 det A
260. If and , then is equal to
(a) 4 (b) 8 (c) 16 (d) 32
261. If A and B are square matrices of order 3 such that , then
(a) – 9 (b) – 81 (c) – 27 (d) 81
262. Which of the following is correct
(a) Determinant is a square matrix (b) Determinant is a number associated to a matrix
(c) Determinant is a number associated to a square matrix (d) None of these
263. Let A be a skew-symmetric matrix of odd order, then is equal to
(a) 0 (b) 1 (c) –1 (d) None of these
264. Let A be a skew-symmetric matrix of even order, then
(a) Is a perfect square (b) Is not a perfect square (c) Is always zero (d) None of these
265. For any matrix A, if A(adj.A) , then
(a) 0 (b) 10 (c) 20 (d) 100
266. If , then determinant of is
(a) 5 (b) 25 (c) – 5 (d) – 25
267. If is a singular matrix, then x is
(a) (b) (c) (d)
268. The product of a matrix and its transpose is an identity matrix. The value of determinant of this matrix is
(a) – 1 (b) 0 (c) (d) 1
269. If , then det A = [EAMCET 2002]
(a) 2 (b) 3 (c) 4 (d) 5
270. If and are matrix such that , then
(a) or (b) and
(c) (d)
271. If A is a square matrix such that , then det (A) equals
(a) 0 or 1 (b) – 2 or 2 (c) – 3 or 3 (d) None of these
272. If A is a square matrix such that , then for any +ve integer n, is equal to
(a) 0 (b) 2n (c) (d)
273. If A is a square matrix of order 3 and entries of A are positive integers, then is
(a) Different from zero (b) 0 (c) Positive (d) An arbitrary integer.
274. If A and B are any matrix, then det implies
(a) (b) or (c) and (d) None of these
275. If , then (x, y, z) =
(a) (4, 3, 2) (b) (3, 2, 4) (c) (2, 3, 4) (d) None of these
276. The solution of the equation is (x, y, z) =
(a) (1, 1, 1) (b) (0, –1, 2) (c) (–1, 2, 2) (d) (–1, 0, 2)
277. If , and , then X is equal to
(a) (b) (c) (d)
278. If A is a non-zero column matrix of order and B is a non-zero row matrix of order , then rank of AB is equal to
(a) m (b) n (c) 1 (d) None of these
279. If , then
(a) (b) (c) (d) None of these
280. If is the identity matrix of order n, then rank of is
(a) 1 (b) n (c) 0 (d) None of these
281. The rank of a null matrix is
(a) 0 (b) 1 (c) Does not exist (d) None of these
282. If A is a non-singular square matrix of order n, then the rank of A is
(a) Equal to n (b) Less then n (c) Greater then n (d) None of these
283. If A and B are two matrices such that rank of and rank of , then
(a) rank (AB) = mn (b) rank (AB) rank (A)
(c) rank (AB) rank (B) (d) rank (AB) min (rank A, rank B
284. If A is an inevitable matrix and B is a matrix, then
(a) rank (AB) = rank (A) (b) rank (AB) = rank (B) (c) rank (AB) > rank (A) (d) rank (AB) > rank (B)
285. If the points and are collinear, then the rank of the matrix will always be less than
(a) 3 (b) 2 (c) 1 (d) None of these
286. If A is a matrix such that there exists a square submatrix of order r which is non-singular and every square submatrix of order or more is singular, then
(a) rank (A) = r +1 (b) rank (A) = r (c) rank (A) > r (d) rank (A) r +1
287. The rank of the matrix is
(a) 1 (b) 2 (c) 3 (d) 4
288. The system of equations of n equations in n unknown has infinitely many solutions if
(a) (b) (c) (d)
289. The trace of skew symmetric matrix of order is
(a) 0 (b) 1 (c) n (d)
290. If and ,then equals
(a) (b) (c) (d)
291. The construction of matrix A whose element is given by is
(a) (b)
(c) (d) None of these
292. If A is a square matrix of order n such that its elements are polynomial in x and its r-rows become identical for , then
(a) is a factor of (b) is a factor of
(c) is a factor of (d) is a factor of
293. If is a scalar matrix of order such that for all i, then trace of A is equal to
(a) nk (b) (c) (d) None of these
Comments
Post a Comment