MATHEMATICAL INDUCTION-(E)-04-Assignment
1. is divisible by
(a) 5 (b) 7 (c) 9 (d) 11
2. For every natural number n, is divisible by
(a) 6 (b) 12 (c) 24 (d) 5
3. For every natural number n, is divisible by
(a) 16 (b) 128 (c) 256 (d) None of these
4. is divisible by
(a) 3 (b) 19 (c) 64 (d) 29
5. For all positive integral values of n, is divisible by
(a) 8 (b) 16 (c) 24 (d) None of these
6. For all positive integral values of n, is divisible by
(a) 2 (b) 4 (c) 8 (d) 12
7. If , then is divisible by
(a) (b) (c) (d)
8. For each , is divisible by
(a) 23 (b) 41 (c) 49 (d) 98
9. For each , is divisible by
(a) (b) (c) (d)
10. If , then the greatest integer which divides n(n – 1)(n – 2) is
(a) 2 (b) 3 (c) 6 (d) 8
11. If , then . is always divisible by
(a) 25 (b) 35 (c) 45 (d) None of these
12. If , then is divisible by
(a) 113 (b) 123 (c) 133 (d) None of these
13. For every natural number n, is divisible by
(a) 4 (b) 6 (c) 10 (d) None of these
14. The difference between an integer and its cube is divisible by
(a) 4 (b) 6 (c) 9 (d) None of these
15. For every natural number n
(a) (b) (c) (d)
16. For each , the correct statement is
(a) (b) (c) (d)
17. For natural number n, , if
(a) n < 2 (b) n > 2 (c) n 2 (d) Never
18. If n is a natural number then is true when
(a) n > 1 (b) n 1 (c) n > 2 (d) n 2
19. For positive integer n, , if
(a) n > 5 (b) n 5 (c) n < 5 (d) n > 6
20. For every positive integer n, when
(a) n < 4 (b) n 4 (c) n < 3 (d) None of these
21. For every positive integral value of n, when
(a) n > 2 (b) n 3 (c) n 4 (d) n < 4
22. For natural number n, , if
(a) n > 3 (b) n > 4 (c) n 4 (d) n 3
23. The value of the n natural numbers n such that the inequality is valid is
(a) For n 3 (b) For n < 3 (c) For mn (d) For any n
24. Let P(n) denote the statement that is odd. It is seen that , is true for all
(a) n > 1 (b) n (c) n > 2 (d) None of these
25. If {x} denotes the fractional part of x then , is
(a) 3/8 (b) 7/8 (c) 1/8 (d) None of these
26. If p is a prime number, then is divisible by p when n is a
(a) Natural number greater than 1 (b) Irrational number
(c) Complex number (d) Odd number
27. is divisible by for
(a) n > 1 (b) n > 2 (c) All n N (d) None of these
28. Let P(n) be a statement and let P(n) p(n + 1) for all natural numbers n, then P(n) is true
(a) For all n (b) For all n > 1
(c) For all n > m , m being a fixed positive integer (d) Nothing can be said
29. If P(n) = 2 + 4 + 6 +….+ 2n, n N, then P(k) = k(k + 1) + 2 P(k + 1) = (k + 1)(k + 2) + 2 for all k N. So we can conclude that P(n) = n(n + 1) + 2 for
(a) All n N (b) n > 1 (c) n > 2 (d) Nothing can be said
30. For every natural number n, n(n + 1) is always
(a) Even (b) Odd (c) Multiple of 3 (d) Multiple of 4
31. The statement P(n) “ ” is
(a) True for all n > 1 (b) Not true for any n (c) True for all n N (d) None of these
32. If , then for any n N, equals
(a) (b) (c) (d) None of these
33. The least remainder when is divided by 5 is
(a) 1 (b) 2 (c) 3 (d) 4
34. The remainder when is divided by 13 is
(a) 6 (b) 8 (c) 9 (d) 10
35. when divided by 7 leaves the remainder
(a) 1 (b) 6 (c) 5 (d) 2
Comments
Post a Comment