Science-Class-12 Maths DPP Talent Search Examinations
Mathematics-XII
MATHEMATICS
1. The value of lim
sin4 x cos2 x
4 2 is
x cos
x sin x
(a) 0 (b) 1 (c) ½ (d) not defined
2. Let f(x) = sinx + x. Then f–1(x) is
(a) many-one and even (b) one-one and even (c) one one and odd (d) many-one and odd
3. The locus of point r satisfying | r – a | = | r – b | = | r – c |, a, b, c are collinear points, is a
(a) straight line (b) circle (c) plane (d) null set
dy d 2 y
4. For the growth of a function, which of the factors y,
,
dx dx2
is most important?
(a) y (b)
dy
dx (c)
d 2 y
dx2
(d) none of these
5. a, b, c and d are complex numbers, then the value of
2 a b c d ac bd
a b c d
2(a c)(b d )
ac(b d ) bd (a c) is
ac bd ac(b d ) bd (a c) 2abcd
(a) 0 (b) a + b + c + d (c) abcd
6. If A, B, C, P, Q, R R, then the value of
cos( A P) cos( A Q) cos( A R)
(d) ac + bd
cos(B P) cos(B Q) cos(B R) is
cos(C P) cos(C Q) cos(C R)
(a) cos A cos P + cos B cos Q + cos C cos R (b) cos (A – P) cos (B – Q) cos(C– R)
(c) cos (A + B + C) – cos (P – Q – R) (d) none of the above
- : Rough Space : -
[2]
Mathematics-XII
7. lim
n
(n!)1/ n
n
equals
(a) e (b) e–1 (c) 1 (d) none of these
8. lim
sin x (sin x)sin x
is equal to
x / 2 1 sin x ln sin x
(a) 4 (b) 2 (c) 1 (d) none of these
9. A man of height 2m walks directly away from a lamp of height 5m, on a level road at 3m/s. The rate at which the length of his shadow is increasing is
(a) 1 m/s (b) 2 m/s (c) 3 m/s (d) 4 m/s
10. By LMVT, which of the following is true for x > 1
(a) 1 + x ln x < x < 1 + ln x (b) 1 + ln x < x < 1 + x ln x
(c) x < 1 + x ln x < 1 + ln x (d) 1 + ln x < 1 + x ln x < x
11.
(x2 1)
x3 (2x4 2x2 1)
dx is equal to
(a)
(2x4 2x2 1)
2 c
(b)
(2x4 2x2 1)
c
x(x
1) x3
(c)
(2x4 2x2 1)
x2 c
(d)
(2x4 2x2 1)
2x2 c
12.
(2x12 5x9 )
(x5 x3 1)3 dx is equal to
(a)
x2 2x
(x5 x3 1)2 c
(b)
x10
2(x5 x3 1)2 c
(c) ln | x5 + x3 + 1| +
(2x7 5x4 ) c
(d) none of the above
- : Rough Space : -
[3]
Mathematics-XII
13. Solution of the differential equation
dy y(x y ln y) is
dx x(x ln x y)
(a)
x ln x y ln y c
xy
(b)
x ln x y ln y c
xy
(c)
l n x ln y c x y
(d)
l n x ln y c x y
14. If y = f(x) passing through (1, 2) satisfies the differential equation y(1 + xy) dx – x dy = 0, then
(a)
f (x)
2x 2 x2
(b)
f (x)
x 1
x2 1
(c)
f (x)
x 1
4 x2
(d)
f (x)
4x 1 2x2
15. If the non-zero vectors a and b are perpendicular to each other, then the solution of the equation
r a b
→ → 1 → →
→ → 1 → → → →
(a)
r xa → → (a b ) (b)
a.a
r xb → → (a b ) (c)
b.b
r x (a b )
(d) none of the above
16. Let
→
a, b
c be mutually perpendicular vectors of the same magnitude. If a vector x
satisfies the
equation
→
→ b ) →
b
→ →
b ] →
→ → →
0 , then x is given by
a [(x
1 → →
a] [(x c )
→ 1 →
c [(x a) c]
→ → 1 → → →
1 → → →
(a)
(a b c )
2
(b)
(2a b c )
3
(c)
(a b c )
3
(d)
(a b 2c)
2
17. The locus of point r satisfying | r – a | = | r – b | = | r – c | = | r – d |, no three of a, b, c, d are collinear points, a, b, c, d are coplanar but non-concyclic points, is a
(a) straight line (b) circle (c) plane (d) null set
18. The locus of point r satisfying | r – a | = | r – b | = | r – c | = | r – d |, no three of a, b, c, d are collinear points, a, b, c, d are non-coplanar points, is a
(a) straight line (b) circle (c) plane (d) a point
19. For any vector A , the value of
iˆ ( A iˆ) ˆj ( A ˆj) kˆ ( A kˆ) is equal to
(a) 0 (b) 2 A (c)
2 A
(d) none of these
20. Top 8 players P1, P2, P3, ...., P8 play tennis tournament. Let pi denote the probability of Pi reaching
8
final. Then pi is
i 1
(a) 1 (b) 1½ (c) 2 (d) 4
🙤🙦🙥🙧
[4]
Comments
Post a Comment