DPP-47 to 48 With Answer Physical chemistry
DAILY PRACTICE PROBLEMS (DPP)
Subject : Physical/Inorg.Chemistry Date : DPP No. 47 to 48 Class : XIII Course :
DPP No.1
Total Marks : 45 Max. Time : 45 min.
Single choice Objective ('–1' negative marking) Q.1 to Q.3 (3 marks 3 min.) [9, 9]
Multiple choice objective ('–1' negative marking) Q.4 (4 marks 4 min.) [4, 4]
Subjective Questions ('–1' negative marking) Q.5 to Q.12 (4 marks 4 min.) [32, 32]
1. Calculate the change in pH when a 0.1 M solution of CH3COOH in water at 25ºC is diluted to a final concentration
of 0.01 M. [Ka
= 1.85 × 10–5]
tc 25ºCrki ij CH3COOHds 0.1Mfoy;u dks ty }kjk 0.01MlkUnzrk rd ruq fd;k tkrk gSA rks pHifjorZu dh x.kuk dhft,[K = 1.85 × 10–5]
(1*) +0.5 (2) +0.4 (3) +0.7 (4) +0.6
Sol. pH =
1 {pK
2 a
– log C}
so (pH) =
1 [log C – log C ] = 1 {–1 + 2} = 0.5 [pH will increase].
2 i f 2
2. At 25ºC , the dissociation constants of CH3COOH and NH4OH in an aqueous solution are almost the same. The pH of a solution of 0.01 N CH3COOH is 4 at 25ºC. The pH of 0.01 N NH4OH solution at the same temperature would be : 25ºCij,d tyh; foy;u esaCH3COOHrFkkNH4OHds fo;kstufLFkjkad dkeku yxHkxleku gSSA25ºCij0.01N CH3COOH ds foy;u dh pH 4gSA leku rkieku ij0.01N NH4OH foy;u dhpHD;k gksxh \
(1) 4 (2) 3 (3*) 10 (4) 11
3. The acid dissociation constants of H S and HS– are 10–7 and 10–13 respectively. The pH of 0.1M aqueous
solution of H2S will be :
H SrFkkHS– vEyds fo;kstufLFkjkaddkeku Øe'k%10–7 rFkk10–13 gSAH S ds0.1Mtyh;fo;yudhpHD;kgksxh\
2 2
(1) 2 (2) 2 (3*) 4 (4) 5
4. Which of the following increase with dilution at a given temperature?
(1*) pH of 103M acetic acid solution (2) pH of 103 M aniline solution
(3*) degree of dissociation of 103M acetic acid (4*) degree of dissociation of 10–3M aniline
fn;sx,rkiekuijfuEuesalsfdlesaruqrkdslkFko`f)gksrhgSA
(1*) 103M ,lhfVd vEy ds foy;u dh pH (2) 103 M ,uhyhu ds foy;u dh pH (3*)103M,lhfVdvEy dsfo;kstu dhek=kk (4*)10–3M,uhyhudsfo;kstudhek=kk
Sol. Degree of dissocation of WA & WB will increase.
[H+] in WA and [OH–] in WB will decrease so pH of WA and pOH of WB will increase.
5. How much water must be added to 300 mL of a 0.2 M solution of CH3COOH for the degree of dissociation of
the acid to double ? (Assume Ka of acetic acid is of order of 10 M)
–5
CH3COOHds0.2Mfoy;uds 300mlesa fdruk ty feyk;k tk,]fd vEyds fo;kstudh ek=kknks xquhgks tk,
¼;g ekudj dh ,lhfVd vEy dk K 10–5 MdksfV dk gS½
Sol. Initially degree of dissociation =
Now degree of dissociation, = 2 = =
so C1 =
C Hence we have
4
300 × 0.2 = Vf ×
0.2
4
so Vf = 1200 ml
Hence water added = 1200 – 300 = 900 ml
Ans. 900 mL.
6. Saccharin (Ka = 2 10 ) is a weak acid represented by formula HSac. A 4 10 mole amount of
12 4
saccharin is dissolved in 200 cm3 solution of pH 3 . Assuming no change in volume , calculate the concentration of Sac ions in the resulting solution at equilibrium.
LkSdsjhu(K =21012),dnqcZyvEygSftldksHSaclw=k}kjkçnf'kZrdjrsgSA,d4104eksyek=k dsLkSdsjhu
dks200cm3foy;uesa?ksyusijpH3çkIrgksrhgSAekukdhvk;ruesadksbZifjorZuughagksrkgSAlkE;koLFk ijifj.kehs foy;uesaSacvk;udhlkUnzrkdhx.kukdjksA
Ans. [Sac–] = 4 × 10–12 M
Sol. Calculation of [H+] and [HSac] at start
4 10 4 1000
[HSac] = 200
= 0.002 M
The dissociation of HSac is as below
HSac H+ + Sac– At start 0.002 0.001 0
At equi. 0.002-x 0.001 + x x
K =
[H ][Sac ] [HSac] =
(0.01 x)x
0.002 x
= 2 ×10–12
x = 4 ×10–12 M
[Sac–] = 4 ×10–12 M.
7. Find [OH–] in a solution made by dissolving 0.005 mol each of NH (K
= 1.8 × 10–5) and pyridine (K =1.5×10–9)
3 b b
in enough water to make up 1 L of the solution. What are the concentration of ammonium and pyridinium ions.
NH (K =1.8×10–5)rFkkfijhMhu(K =1.5×10–9)izR;sdds 0.005eksydks i;kZIrek=kk esatydksfeykdj 1yhVj
3 b b
foy;ucuk;kx;kgSArksfoy;uesa[OH–]dhx.kukdjksAveksfu;erFk fijhfMuh;evk;udhlkUnzrkD;kgksxh\
Ans. [OH–] = [NH+ ] = 3 × 10–4 M ; [C H N+] = 2.5 × 10–8 M.
8. What is the concentration of acetic acid which can be added to 0.5 M formic acid so that the % dissociation
of neither acid is changed by the addition. Ka
for acetic acid is 2 × 10-5, K
for formic acid = 2.4 × 10-4.
,lhfVdvEydhlkUnzrkD;kgSftls0.5MlkUnzrkdsQkWfeZdvEyesablizdkjfeyk;ktkrkgSfdfeykusijvEy
ds% fo;kstudhek=k esadksbZifjorZuughagksrkgSA,lhfVdvEydsfy,K =2×10-5gSrFk QkWfeZdvEydsfy,K =2.4×10-
a a
4gSA
Sol. C = C
1 1 2 2
=
2 × 10–5 × C = 2.4 × 10–4 × 0.5 = C = 6 M.
9. Hydrazine, N2H4, can interact with water in two stages.
N H (aq) + H O(l) N H + (aq) + OH–(aq) K = 8.1 × 10–7
N H + (aq) + H O (l) N H 2+ (aq) + OH–(aq) K = 9 × 10–16
2 5 2 2 6 b2
(i) What are the concentrations of OH–, N H + and N H 2+ in a 0.010 M aqueous solution of hydrazine ?
2 5 2 6
(ii) What is pH of the 0.010 M solution of hydrazine?
gkbMªsthuN2H4,tydslkFknksinks aesafØ;kdjrkgSA
N H (aq) + H O(l) N H + (aq) + OH–(aq) K = 8.1 × 10–7
N H + (aq) + H O (l) N H 2+ (aq) + OH–(aq) K = 9 × 10–16
2 5 2 2 6 b2
(i) 0.010Mtyh; foy;u ds gkbMªsthu esaOH–,N H + rFkkN H 2+ dhlkUnzrk D;kgS \
2 5 2 6
(ii) gkbMªsthu ds0.010Mfoy;u dhpHD;k gS \
Ans. (i) [OH–] = 9 × 10–5 M, [N2H5+] = 9 × 10–5 ; (ii) pH = 9.96, [N2H62+] = 9 × 10–16.
Integer Answer Type
This section contains 3 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9.
iw.k±dmÙkjizdkj
bl[k.Mesa3iz'ugSaAizR;sdiz'udkmÙkj0ls9 rdiw.k ±dgSA
10. In what ratio should a 15% solution of acetic acid be mixed with a 3% solution of the acid to prepare a 12% solution(all percentages are mass/mass percentages) : 3% vEydsfoy;udslkFk15%,flfVdvEydsfoy;udksfdlvuqikresa fefJrdjukpkfg,fd12%foy;u(lHkh izfr'krnzO;eku@nzO;ekuizfr'kresagSa)culdsA
Ans. 3
Sol. Let M1 (mass) of 15% solution and M2 (mass) of 3%.
Resultant = 12% solution. 12(M1 + M2) = 15 × M1 + 3 × M2.
3M1 = 9M2.
M1 3
M2 = 1 .
11. 2 mole PCl5, 1 mole Cl2 and 1 mole PCl3 are taken in 1 lt flask. When equilibrium is set up, PCl5 is found to be 50% dissociated into the products. Then, find KC for the reaction PCl5(g) PCl3(g) + Cl2(g).
,d1ltdsik=kesa]PCl5 ds2eksy]Cl2ds,deksyrFk PCl3ds,deksyfy;sx;sAtclkE;LFk firgksrkgS]rcik;k
x;kfd]PCl5 dk50%mRikn esafo;ksftrgkstkrkgSAblizdkjvfHkfØ;kPCl5(g) PCl3(g)+Cl2(g)dsfy,KC
gSA
Ans. 4
Sol. PCl5 PCl3 + Cl2
Initially 2 1 1
izkjEHkesa 2 1 1
At equilibrium 2 – 1 1 + 1 1 + 1
lkE;ij 2 – 1 1 + 1 1 + 1
2 2
KC = 1 = 4
12. Consider the following reversible reactions :
A + B P ; KC = 6
2B + C 2D ; KC = 4
Hence, what will be the KC for the reaction,
C
A + D P + 2
fuEumRØe.kh;vfHkfØ;kvksaijfopkjdhft,: A + B P ; KC = 6
2B + C 2D ; KC = 4
C
rc vfHkfØ;kA+D P+ 2 ds fy, KC dk eku D;k gksxk \
Ans. 3
1
Sol. Eq. (i) + {EQ. (ii)} ×
2
So, KC
= 6 × (4)– 1 / 2
= 3
DAILY PRACTICE PROBLEMS (DPP)
Subject : Physical/Inorg.Chemistry Date : DPP No. 48 Class : XIII Course :
DPP No.2
Total Marks : 42 Max. Time : 42 min.
Single choice Objective ('–1' negative marking) Q.1 to Q.2 (3 marks 3 min.) [6, 6]
Subjective Questions ('–1' negative marking) Q.3 to Q.11 (4 marks 4 min.) [36, 36]
1.(a) Which of the following salts is alkaline in water?
fuEuesalsdkSulsyo.kdktyesa{k jh;gSA
(1) CuSO4 . 5H2O (2) K2SO4 (3) NaNO3 (4*) Na2B4O7 . 10H2O
(b) Which of the following salts undergoes anionic hydrolysis?
fuEuesalsdkSulkyo.kdk_.kvk;fudtyvi?kVun'kkZrkgSA
(1) CuSO4 (2) NH4Cl (3) FeCl3 (4*) Na2CO3
2.(a) The pH value will be highest for the aqueous solution of
fuEu esals fdlyo.k dstyh; foy;udh pHdkeku vf/kdregksxk &
(1) NaCl (2*) Na2CO3 (3) NH4Cl
(4) NaHCO3
(b) Which of the following salts does not undergo hydrolysis?
fuEuesalsdkSulsyo.kdktyvi?kVuughagksrkgSA
(1) NH4NO3 (2) FeCl3 . 6H2O (3*) KCl
(4) KCN
3. Find the concentration of H+ , HCO & CO 2 in a 0.01 M solution of H CO
if the pH of this is 4.1.
3
K (H CO ) = 4 10 7 ; K
3 2 3
(HCO ) = 4.8 10 11 .
a 2 3 a 3
0.01MH CO ds foy;u esaH+ ,HCO rFkkCO 2 dh lkUnzrk Kkr djksA ;fn bldhpH4.1gSA
2 3 3 3
K (H CO ) = 4 10 7 ; K (HCO ) = 4.8 10 11 .
a 2 3 a 3
Ans. [H+] = 8 × 10–5, [HCO –] = 5 × 10–5, [CO 2–] = 3 × 10–11.
3 3
4.(a) Potassium Cyanide is the deadliest poison known. Calculate the percent hydrolysis in a 0.06 M solution of KCN. [K (HCN) = 6 × 10-10]
iksVsf'k;elk;ukbM,de`R;qdkjhfo"kds:iesatkuktkrkgSAKCNds0.06Mfoy;udsizfr'krtyvi?kVudhx.kuk dhft;saA [K (HCN) = 6× 10-10]
Sol. h = = = = 1.66 × 10–2 = 1.66 %.
(b) Calculate the degree of hydrolysis of 0.1 M sodium acetate solution if pH is 8.9 . 0.1MlksfM;e,lhVsVfoy;uds tyvi?kV~u dhek=kk dhx.kuk djks;fnpH 8.9gSA
Ans. 8 x 10-5.
5. A solution contains 0.10 M H S and 0.25 M HCl. Calculate the concentration of [ S 2 ] and [ HS ] ions in the
solution. For H2S,
Ka1
= 1.0 ×10–7 ,
a = 1.3 × 10–13
,d foy;u0.10M H S rFkk0.25M HClj[krk gSA foy;u esa [S2]rFkk[HSvk;udhlkUnzrk dh x.kuk djkssAH S
2 2
ds fy, Ka = 1.0 ×10–7 rFkk Ka = 1.3 × 10–13.
Ans. [ HS ] = 4 10 8 M ; [ S2 ] = 2.08 10 20 M.
6. Determine the [S2] in a saturated (0.1M) H S solution to which enough HCl has been added to produce
a [H+] of 2 x 104 . K
= 107 , K
= 1014.
(0.1M) H Sdslar`Irfoy;uesa[S2]vk;udhlkUnzrkdkfu/k Zj.kdhft,tksfdi;kZIrek=k esaHClfeykusij
[H+] ds 2 x 104 mRiUu dj ldsA K
Ans. [S2] = 2.5 x 1015.
= 107 , K = 1014.
Sol. Ka =
[H ]2 [S2 ] (H2S)
1
10–21 =
4 10 8 [S2 ]
101
so [S2–] =
× 10 –14 = 2.5 ×10–15 M.
4
7. Ka for butyric acid is 2.0 10 . Calculate pH and hydroxyl ion concentration of 0.02 M aqueous solution of
6
sodium butyrate .
C;wVsfjdvEydsfy,K =2.0106gSApHrFk 0.02MlksfM;eC;wVsjsVdstyh;foy;uesagkbMªksfDlyvk;udh lkUnzrkdhx.kukdhft,A
Ans. pH = 9, [OH¯ ] = 10–5.
8. Calculate the mass of NH4Cl required to be dissolved in 500 ml water to have pH = 4.5,
if Kb for NH OH is 10
–6 .
500ml tyesapH=4.5,j[kus ds fy,NH Clds fdrus nzO;eku dh vko';drk gksxh\;fnNH OHdsfy,K =10–6 gSA
4 4 b
Ans. 2.675 gm.
9. Calculate hydrolysis constants for each of the following salt solutions. Compute also the pH of the solution and the percentage of hydrolysis. fuEuyo.kfoy;uesaçR;sddsfy,tyvi?kV~ufLFkjkaddhx.kukdjksAfoy;udspHdhHkhx.kukdjksrFk tyvi?kV~u dkçfr'krHkhKkrdjksA
(i) 0.05 M NaAc ; K (HAc) = 2 × 10–5.
(ii) 0.008 M NH4 Cl ; Kb (NH ) = 2 × 10 .
–5
(iii) 0.5 M Na S ; K (HS—) = 1.0 × 10–15 [ log (0.475) = - 0.32 ].
2 a
(iv) 0.64 M KCN : Ka
(HCN) = 4.0 × 10–10.
Ans. Kh pH %Hydrolysis
Integer Answer Type
This section contains 2 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9.
iw.k±dmÙkjizdkj
bl[k.Mesa2iz'ugSaAizR;sdiz'udkmÙkj0ls9 rdiw.k ±dgSA
10. For the equilibrium AB(g) A(g) + B(g) at a given temperature, the pressure at which one-third of AB is dissociated is numerically equal to how many times of KP ?
fn;sx;srkiijlkE;AB(g) A(g) +B(g) dsfy,]nkc]ftlijABdk,dfrgkbZfo;ksftrgkstkrkgSogvkafdd
:ilsKPlsfdrusxqusdscjkcjgS?
Ans. 8
Sol. AB A + B
a 0 0
a a a
3 3
a 4a
Total moles of equilibrium = a + 3 = 3
a / 3 P a / 3 P
So, KP =
4a / 3 4a / 3 P
2a / 3 P = 8
4a / 3
or P = 8 Kp
11. How many moles of KMnO4 are needed to oxidise 50 moles of Fe0.9O in acidic medium ?
vEyh;ek/;eesaFe0.9Ods50eksyksdksvkWDlhd`rdjusdsfy,KMnO4dsfdruseksyvko';dgksaxs?
Ans. 7
Sol. KMnO
+ H+ + Fe O
Mn2+ + Fe3+
4 0.9
vf = 5 vf = 0.9 3 20
= 0.7
nKMnO4
nFe0.9O
0.7
= 5
nKMnO4
ds vko';d eksy required =
0.7
5
× 50 = 7 moles
nKMnO4
0.7
ds vko';d eksy = 5 × 50 = 7 moles
Comments
Post a Comment