DPP-47 to 48 With Answer Physical chemistry

DAILY PRACTICE PROBLEMS (DPP) Subject : Physical/Inorg.Chemistry Date : DPP No. 47 to 48 Class : XIII Course : DPP No.1 Total Marks : 45 Max. Time : 45 min. Single choice Objective ('–1' negative marking) Q.1 to Q.3 (3 marks 3 min.) [9, 9] Multiple choice objective ('–1' negative marking) Q.4 (4 marks 4 min.) [4, 4] Subjective Questions ('–1' negative marking) Q.5 to Q.12 (4 marks 4 min.) [32, 32] 1. Calculate the change in pH when a 0.1 M solution of CH3COOH in water at 25ºC is diluted to a final concentration of 0.01 M. [Ka = 1.85 × 10–5] tc 25ºCrki ij CH3COOHds 0.1Mfoy;u dks ty }kjk 0.01MlkUnzrk rd ruq fd;k tkrk gSA rks pHifjorZu dh x.kuk dhft,[K = 1.85 × 10–5] (1*) +0.5 (2) +0.4 (3) +0.7 (4) +0.6 Sol. pH = 1 {pK 2 a – log C} so (pH) = 1 [log C – log C ] = 1 {–1 + 2} = 0.5 [pH will increase]. 2 i f 2 2. At 25ºC , the dissociation constants of CH3COOH and NH4OH in an aqueous solution are almost the same. The pH of a solution of 0.01 N CH3COOH is 4 at 25ºC. The pH of 0.01 N NH4OH solution at the same temperature would be : 25ºCij,d tyh; foy;u esaCH3COOHrFkkNH4OHds fo;kstufLFkjkad dkeku yxHkxleku gSSA25ºCij0.01N CH3COOH ds foy;u dh pH 4gSA leku rkieku ij0.01N NH4OH foy;u dhpHD;k gksxh \ (1) 4 (2) 3 (3*) 10 (4) 11 3. The acid dissociation constants of H S and HS– are 10–7 and 10–13 respectively. The pH of 0.1M aqueous solution of H2S will be : H SrFkkHS– vEyds fo;kstufLFkjkaddkeku Øe'k%10–7 rFkk10–13 gSAH S ds0.1Mtyh;fo;yudhpHD;kgksxh\ 2 2 (1) 2 (2) 2 (3*) 4 (4) 5 4. Which of the following increase with dilution at a given temperature? (1*) pH of 103M acetic acid solution (2) pH of 103 M aniline solution (3*) degree of dissociation of 103M acetic acid (4*) degree of dissociation of 10–3M aniline fn;sx,rkiekuijfuEuesalsfdlesaruqrkdslkFko`f)gksrhgSA (1*) 103M ,lhfVd vEy ds foy;u dh pH (2) 103 M ,uhyhu ds foy;u dh pH (3*)103M,lhfVdvEy dsfo;kstu dhek=kk (4*)10–3M,uhyhudsfo;kstudhek=kk Sol. Degree of dissocation of WA & WB will increase. [H+] in WA and [OH–] in WB will decrease so pH of WA and pOH of WB will increase. 5. How much water must be added to 300 mL of a 0.2 M solution of CH3COOH for the degree of dissociation of the acid to double ? (Assume Ka of acetic acid is of order of 10 M) –5 CH3COOHds0.2Mfoy;uds 300mlesa fdruk ty feyk;k tk,]fd vEyds fo;kstudh ek=kknks xquhgks tk, ¼;g ekudj dh ,lhfVd vEy dk K 10–5 MdksfV dk gS½ Sol. Initially degree of dissociation  = Now degree of dissociation,  = 2 = = so C1 = C  Hence we have 4 300 × 0.2 = Vf × 0.2 4 so Vf = 1200 ml Hence water added = 1200 – 300 = 900 ml Ans. 900 mL. 6. Saccharin (Ka = 2  10 ) is a weak acid represented by formula HSac. A 4  10 mole amount of 12 4 saccharin is dissolved in 200 cm3 solution of pH 3 . Assuming no change in volume , calculate the concentration of Sac  ions in the resulting solution at equilibrium. LkSdsjhu(K =21012),dnqcZyvEygSftldksHSaclw=k}kjkçnf'kZrdjrsgSA,d4104eksyek=k dsLkSdsjhu dks200cm3foy;uesa?ksyusijpH3çkIrgksrhgSAekukdhvk;ruesadksbZifjorZuughagksrkgSAlkE;koLFk ijifj.kehs foy;uesaSacvk;udhlkUnzrkdhx.kukdjksA Ans. [Sac–] = 4 × 10–12 M Sol. Calculation of [H+] and [HSac] at start 4 10 4 1000 [HSac] = 200 = 0.002 M The dissociation of HSac is as below HSac H+ + Sac– At start 0.002 0.001 0 At equi. 0.002-x 0.001 + x x  K = [H ][Sac ] [HSac] = (0.01 x)x 0.002  x = 2 ×10–12 x = 4 ×10–12 M [Sac–] = 4 ×10–12 M. 7. Find [OH–] in a solution made by dissolving 0.005 mol each of NH (K = 1.8 × 10–5) and pyridine (K =1.5×10–9) 3 b b in enough water to make up 1 L of the solution. What are the concentration of ammonium and pyridinium ions. NH (K =1.8×10–5)rFkkfijhMhu(K =1.5×10–9)izR;sdds 0.005eksydks i;kZIrek=kk esatydksfeykdj 1yhVj 3 b b foy;ucuk;kx;kgSArksfoy;uesa[OH–]dhx.kukdjksAveksfu;erFk fijhfMuh;evk;udhlkUnzrkD;kgksxh\ Ans. [OH–] = [NH+ ] = 3 × 10–4 M ; [C H N+] = 2.5 × 10–8 M. 8. What is the concentration of acetic acid which can be added to 0.5 M formic acid so that the % dissociation of neither acid is changed by the addition. Ka for acetic acid is 2 × 10-5, K for formic acid = 2.4 × 10-4. ,lhfVdvEydhlkUnzrkD;kgSftls0.5MlkUnzrkdsQkWfeZdvEyesablizdkjfeyk;ktkrkgSfdfeykusijvEy ds% fo;kstudhek=k esadksbZifjorZuughagksrkgSA,lhfVdvEydsfy,K =2×10-5gSrFk QkWfeZdvEydsfy,K =2.4×10- a a 4gSA Sol. C  = C  1 1 2 2 =  2 × 10–5 × C = 2.4 × 10–4 × 0.5 = C = 6 M. 9. Hydrazine, N2H4, can interact with water in two stages. N H (aq) + H O(l) N H + (aq) + OH–(aq) K = 8.1 × 10–7 N H + (aq) + H O (l) N H 2+ (aq) + OH–(aq) K = 9 × 10–16 2 5 2 2 6 b2 (i) What are the concentrations of OH–, N H + and N H 2+ in a 0.010 M aqueous solution of hydrazine ? 2 5 2 6 (ii) What is pH of the 0.010 M solution of hydrazine? gkbMªsthuN2H4,tydslkFknksinks aesafØ;kdjrkgSA N H (aq) + H O(l) N H + (aq) + OH–(aq) K = 8.1 × 10–7 N H + (aq) + H O (l) N H 2+ (aq) + OH–(aq) K = 9 × 10–16 2 5 2 2 6 b2 (i) 0.010Mtyh; foy;u ds gkbMªsthu esaOH–,N H + rFkkN H 2+ dhlkUnzrk D;kgS \ 2 5 2 6 (ii) gkbMªsthu ds0.010Mfoy;u dhpHD;k gS \ Ans. (i) [OH–] = 9 × 10–5 M, [N2H5+] = 9 × 10–5 ; (ii) pH = 9.96, [N2H62+] = 9 × 10–16. Integer Answer Type This section contains 3 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. iw.k±dmÙkjizdkj bl[k.Mesa3iz'ugSaAizR;sdiz'udkmÙkj0ls9 rdiw.k ±dgSA 10. In what ratio should a 15% solution of acetic acid be mixed with a 3% solution of the acid to prepare a 12% solution(all percentages are mass/mass percentages) : 3% vEydsfoy;udslkFk15%,flfVdvEydsfoy;udksfdlvuqikresa fefJrdjukpkfg,fd12%foy;u(lHkh izfr'krnzO;eku@nzO;ekuizfr'kresagSa)culdsA Ans. 3 Sol. Let M1 (mass) of 15% solution and M2 (mass) of 3%. Resultant = 12% solution. 12(M1 + M2) = 15 × M1 + 3 × M2. 3M1 = 9M2. M1 3 M2 = 1 . 11. 2 mole PCl5, 1 mole Cl2 and 1 mole PCl3 are taken in 1 lt flask. When equilibrium is set up, PCl5 is found to be 50% dissociated into the products. Then, find KC for the reaction PCl5(g) PCl3(g) + Cl2(g). ,d1ltdsik=kesa]PCl5 ds2eksy]Cl2ds,deksyrFk PCl3ds,deksyfy;sx;sAtclkE;LFk firgksrkgS]rcik;k x;kfd]PCl5 dk50%mRikn esafo;ksftrgkstkrkgSAblizdkjvfHkfØ;kPCl5(g) PCl3(g)+Cl2(g)dsfy,KC gSA Ans. 4 Sol. PCl5 PCl3 + Cl2 Initially 2 1 1 izkjEHkesa 2 1 1 At equilibrium 2 – 1 1 + 1 1 + 1 lkE;ij 2 – 1 1 + 1 1 + 1 2  2 KC = 1 = 4 12. Consider the following reversible reactions : A + B P ; KC = 6 2B + C 2D ; KC = 4 Hence, what will be the KC for the reaction, C A + D P + 2 fuEumRØe.kh;vfHkfØ;kvksaijfopkjdhft,: A + B P ; KC = 6 2B + C 2D ; KC = 4 C rc vfHkfØ;kA+D P+ 2 ds fy, KC dk eku D;k gksxk \ Ans. 3   1  Sol. Eq. (i) + {EQ. (ii)} ×    2  So, KC = 6 × (4)– 1 / 2 = 3 DAILY PRACTICE PROBLEMS (DPP) Subject : Physical/Inorg.Chemistry Date : DPP No. 48 Class : XIII Course : DPP No.2 Total Marks : 42 Max. Time : 42 min. Single choice Objective ('–1' negative marking) Q.1 to Q.2 (3 marks 3 min.) [6, 6] Subjective Questions ('–1' negative marking) Q.3 to Q.11 (4 marks 4 min.) [36, 36] 1.(a) Which of the following salts is alkaline in water? fuEuesalsdkSulsyo.kdktyesa{k jh;gSA (1) CuSO4 . 5H2O (2) K2SO4 (3) NaNO3 (4*) Na2B4O7 . 10H2O (b) Which of the following salts undergoes anionic hydrolysis? fuEuesalsdkSulkyo.kdk_.kvk;fudtyvi?kVun'kkZrkgSA (1) CuSO4 (2) NH4Cl (3) FeCl3 (4*) Na2CO3 2.(a) The pH value will be highest for the aqueous solution of fuEu esals fdlyo.k dstyh; foy;udh pHdkeku vf/kdregksxk & (1) NaCl (2*) Na2CO3 (3) NH4Cl (4) NaHCO3 (b) Which of the following salts does not undergo hydrolysis? fuEuesalsdkSulsyo.kdktyvi?kVuughagksrkgSA (1) NH4NO3 (2) FeCl3 . 6H2O (3*) KCl (4) KCN 3. Find the concentration of H+ , HCO  & CO 2 in a 0.01 M solution of H CO if the pH of this is 4.1. 3 K (H CO ) = 4  10 7 ; K 3 2 3 (HCO ) = 4.8  10 11 . a 2 3 a 3 0.01MH CO ds foy;u esaH+ ,HCO  rFkkCO 2 dh lkUnzrk Kkr djksA ;fn bldhpH4.1gSA 2 3 3 3 K (H CO ) = 4  10 7 ; K (HCO ) = 4.8  10 11 . a 2 3 a 3 Ans. [H+] = 8 × 10–5, [HCO –] = 5 × 10–5, [CO 2–] = 3 × 10–11. 3 3 4.(a) Potassium Cyanide is the deadliest poison known. Calculate the percent hydrolysis in a 0.06 M solution of KCN. [K (HCN) = 6 × 10-10] iksVsf'k;elk;ukbM,de`R;qdkjhfo"kds:iesatkuktkrkgSAKCNds0.06Mfoy;udsizfr'krtyvi?kVudhx.kuk dhft;saA [K (HCN) = 6× 10-10] Sol. h = = = = 1.66 × 10–2 = 1.66 %. (b) Calculate the degree of hydrolysis of 0.1 M sodium acetate solution if pH is 8.9 . 0.1MlksfM;e,lhVsVfoy;uds tyvi?kV~u dhek=kk dhx.kuk djks;fnpH 8.9gSA Ans. 8 x 10-5. 5. A solution contains 0.10 M H S and 0.25 M HCl. Calculate the concentration of [ S 2 ] and [ HS  ] ions in the solution. For H2S, Ka1 = 1.0 ×10–7 , a = 1.3 × 10–13 ,d foy;u0.10M H S rFkk0.25M HClj[krk gSA foy;u esa [S2]rFkk[HSvk;udhlkUnzrk dh x.kuk djkssAH S 2 2 ds fy, Ka = 1.0 ×10–7 rFkk Ka = 1.3 × 10–13. Ans. [ HS  ] = 4  10 8 M ; [ S2  ] = 2.08  10 20 M. 6. Determine the [S2] in a saturated (0.1M) H S solution to which enough HCl has been added to produce a [H+] of 2 x 104 . K = 107 , K = 1014. (0.1M) H Sdslar`Irfoy;uesa[S2]vk;udhlkUnzrkdkfu/k Zj.kdhft,tksfdi;kZIrek=k esaHClfeykusij [H+] ds 2 x 104 mRiUu dj ldsA K Ans. [S2] = 2.5 x 1015. = 107 , K = 1014. Sol. Ka = [H ]2 [S2 ] (H2S) 1  10–21 = 4 10 8  [S2 ] 101 so [S2–] = × 10 –14 = 2.5 ×10–15 M. 4 7. Ka for butyric acid is 2.0  10 . Calculate pH and hydroxyl ion concentration of 0.02 M aqueous solution of 6 sodium butyrate . C;wVsfjdvEydsfy,K =2.0106gSApHrFk 0.02MlksfM;eC;wVsjsVdstyh;foy;uesagkbMªksfDlyvk;udh lkUnzrkdhx.kukdhft,A Ans. pH = 9, [OH¯ ] = 10–5. 8. Calculate the mass of NH4Cl required to be dissolved in 500 ml water to have pH = 4.5, if Kb for NH OH is 10 –6 . 500ml tyesapH=4.5,j[kus ds fy,NH Clds fdrus nzO;eku dh vko';drk gksxh\;fnNH OHdsfy,K =10–6 gSA 4 4 b Ans. 2.675 gm. 9. Calculate hydrolysis constants for each of the following salt solutions. Compute also the pH of the solution and the percentage of hydrolysis. fuEuyo.kfoy;uesaçR;sddsfy,tyvi?kV~ufLFkjkaddhx.kukdjksAfoy;udspHdhHkhx.kukdjksrFk tyvi?kV~u dkçfr'krHkhKkrdjksA (i) 0.05 M NaAc ; K (HAc) = 2 × 10–5. (ii) 0.008 M NH4 Cl ; Kb (NH ) = 2 × 10 . –5 (iii) 0.5 M Na S ; K (HS—) = 1.0 × 10–15 [ log (0.475) = - 0.32 ]. 2 a (iv) 0.64 M KCN : Ka (HCN) = 4.0 × 10–10. Ans. Kh pH %Hydrolysis Integer Answer Type This section contains 2 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. iw.k±dmÙkjizdkj bl[k.Mesa2iz'ugSaAizR;sdiz'udkmÙkj0ls9 rdiw.k ±dgSA 10. For the equilibrium AB(g) A(g) + B(g) at a given temperature, the pressure at which one-third of AB is dissociated is numerically equal to how many times of KP ? fn;sx;srkiijlkE;AB(g) A(g) +B(g) dsfy,]nkc]ftlijABdk,dfrgkbZfo;ksftrgkstkrkgSogvkafdd :ilsKPlsfdrusxqusdscjkcjgS? Ans. 8 Sol. AB A + B a 0 0 a a a 3 3 a 4a Total moles of equilibrium = a + 3 = 3  a / 3 P a / 3 P     So, KP =  4a / 3  4a / 3  P 2a / 3 P = 8 4a / 3 or P = 8 Kp 11. How many moles of KMnO4 are needed to oxidise 50 moles of Fe0.9O in acidic medium ? vEyh;ek/;eesaFe0.9Ods50eksyksdksvkWDlhd`rdjusdsfy,KMnO4dsfdruseksyvko';dgksaxs? Ans. 7 Sol. KMnO + H+ + Fe O  Mn2+ + Fe3+ 4 0.9 vf = 5 vf = 0.9 3  20  = 0.7  nKMnO4 nFe0.9O 0.7 = 5  nKMnO4 ds vko';d eksy required = 0.7 5 × 50 = 7 moles  nKMnO4 0.7 ds vko';d eksy = 5 × 50 = 7 moles

Comments

Popular posts from this blog

Planning to start your own coaching institute for JEE, NEET, CBSE or Foundation? Here's why not to waste time in developing study material from scratch. Instead use the readymade study material to stay focused on quality of teaching as quality of teaching is the primary job in coaching profession while study material is secondary one. Quality of teaching determines results of your coaching that decides success & future of your coaching while good quality study material is merely a necessary teaching aid that supplements your teaching (video in Hindi)

Physics-30.24-Physics-Solids and Semiconductors

Physics-31.Rotational Mechanics