DPP-43 to 44 Physical Chemistry With Answer

DAILY PRACTICE PROBLEMS (DPP) Subject : Physical/Inorg.Chemistry Date : DPP No. 43 to 44 Class : XIII Course : DPP No.1 Total Marks : 41 Max. Time : 41 min. Single choice Objective ('–1' negative marking) Q.1 (3 marks 3 min.) [3, 3] Multiple choice objective ('–1' negative marking) Q.2 (4 marks 4 min.) [4, 4] Assertion and Reason (no negative marking) Q.3 (3 marks 3 min.) [3, 3] Comprehension ('–1' negative marking) Q.4 to Q.9 (3 marks 3 min.) [18, 18] Subjective Questions ('–1' negative marking) Q.10 (4 marks 4 min.) [4, 4] BooSt YoUr PreViouS ConCept Single choice Objective ('–1' negative marking) Q.11 to Q.13 (3 marks 3 min.) [9, 9] 1. Which of the following is incorrect for sodium peroxide ? lksfM;eijkDlkbMdsfy,fuEuesalsdkSulklghughagS\ (1) It reacts with water and acid, giving hydrogen peroxide. (2) It is pale yellow in colour and is used to purify the air in submarine and confined space. (3) It is used in many industries as bleaching (4*) It can be prepared by burning the metal in dioxygen at atmospheric pressure. (1);gikuhrFk vEydslkFkfØ;kdjds]gkbMªkstuijkDlkbMnsrkgSA (2);ggYdsihysjaxdkgSrFk blsvUrfj{kesaok;qdks'kq)djusesami;ksxysrsgSA (3)blscgqrlkjsm|ksxksaesafojatdds:iesadkeysrsgSA (4*)ok;qe.Myh;nkcijMkbvkWDlhtuesa/k rqdsToyuds}kjkblsrS;kjfd;ktkrkgSA Sol. (1) Na2O2 + H2O  2NaOH + H2O2 (2) 2Na2O2 + 2CO2  2Na2CO3 + O2, Pale yellowcolour. gYdk ihys jaxA (3) For bleaching wood, pulp, paper and fabrics like linen and cotton. (3) fojatddkmi;ksxydM+h]iYi]dkxtrFk QsfcfjdtSlsysfyurFk dksVu(linenandcoton) ds:iesafd;ktkrkgSA (4) Na O + O 450°C 2Na O 2 2 300atm 2 2 2. The compound Na2IrCl6 reacts with triphenylphosphine in diethyleneglycol in an atmosphere of CO to give [IrCl(CO)(PPh3)2], known as 'Vaska's compound'. (Atomic number of Ir = 77) Which of the following statements is /are correct? (1*) The IUPAC name of the complex is carbonylchloridobis(triphenylphosphine)iridium(I). (2) The hybridisation of the metal ion is sp3 . (3*) The magnetic moment (spin only) of the complex is zero. (4) The complex shows geometrical as well as ionization isomerism. ;kSfxd Na2IrCl6] VªkbZQsfuyQkWfLQu ds lkFk] MkbZ,fFkyhu Xykbdksy esa rFkk CO ds okrkoj.k esa vfHkd`r gksdj nsrk gSA ;g ;kSfxd *okWLdks ;kSfxd* ('Vaska's compound') dgykrk gSA (Ir dk ijek.kq Øekad = 77 gSA) [ fuEu esa ls dkSulk@dkSuls dFku lgh gS@gSa ? (1*);kSfxddkIUPACuke]dkcksZfuyDyksjhMksfcl¼VªkbZQsfuyQkWfLQu½bZfjMh;e(I)gSA (2)/k rqvk;udkladj.ksp3 gSA (3*)ladqydkpqEcdh;vk?kw.kZ¼dsoypØ.k½'kwU;gSA (4)ladqyT;kferh;leko;orkdslkFk&lkFkvk;u leko;orkHkhn'k ZrkgSA Sol. (1) [IrCl(CO)(PPh3)2] carbonylchloridobis(triphenylphosphine)iridium(I). (2) Coordination number of Ir is four. Ir is in (+1) oxidation state with 4d8 configuration. It is trans isomer, so its geometry should be square planar. [IrCl(CO)(PPh3)2] (3) All electrons are paired ; so magnetic moment is zero. (4) The complex has plane of symmetry, so it does not show optical isomerism. (1)[IrCl(CO)(PPh3)2]dkIUPACukedkcksZfuyDyksjhMksfcl¼VªkbZQsfuyQkWfLQu½bZfjMh;e(I)gSA (2)IrdhleUo;la[;k4gSAIr,(+1)vkWDlhdj.kvoLFk esa4d8foU;kldslkFkmifLFkrgSA;gfoi{kleko;ohgS]vr% bldhT;kfefr]oxkZdkj]leryh;gksuhpkfg,A [IrCl(CO)(PPh3)2] (3)lHkhbySDVªkWu;qfXergS]vr%pqEcdh;vk?kw.kZ'kwU;gSA (4) ;|filadqyesalefefrdkrymifLFkrgS]vr%;gizdkf'kdleko;orkughan'k ZrkgSA 3. S1 : Plaster of paris is a hemihydrate of calcium sulphate obtained by heating the gypsum above 393 K. S2 : Sodium carbonate is used in water softening. S3 : For a good quality cement, the ratio of silica to alumina should be between 2.5 to 4 and the ratio of lime to the total of the oxides of silicon aluminium and iron should be as close as possible to 2 S : The mobilities of the alkali metal ions in aqueous solutions are Li+ > Na+ > K+ > Rb+ > Cs+ S1:ftIledks393KdsÅijxeZdjusijdSfY'k;elYQsVdkgsehgkbMªsMizkIrgksrkgS]blsIykLVjvkWQisfjldgrsgSaA S2:lksfM;edkcksZusVdkmi;ksxtye`nkcukusesafd;ktkrkgSA S3:vPNsxq.kdslhesUVdsfy,flfydkrFk ,yqfeukdkvuqikr2.5ls4gksukpkfg,rFk pwusdkflfydu],yqehfu;e rFk vk;judsdqyvkWDlkbMdslkFkvuqikrlEHkor%2dslehigksukpkfg,A S :tyh; foy;u esa {kkjh; /kkrq vk;u dh pkydrk Li+ >Na+ >K+ >Rb+ >Cs+ gSA (1) TTFF (2) TTTT (3*) F T T F (4) FFFF Sol. (3) S : (2 CaSO .2H O) 393K  2 (CaSO ). H O + 3H O ; above 393 K dead burnt plaster is obtained. 1 4 2 4 2 2 S : Ca2+ + Na CO  CaCO  + 2Na+ S3 : Correct statement. S : Li+ < Na+ < K+ < Kb+ < Cs+ Bigger hydrated ion moves slower in aqueous solution. S : (2 CaSO .2H O) 393K  2 (CaSO ). H O + 3H O ; 393 K ds Åij e`r tfyr ¼tyk gqvk½ 1 4 2 4 2 2 IykLVj izkIr gksrk gSA S : Ca2+ + Na CO  CaCO  + 2Na+ S3 : lgh dFku S : Li+ < Na+ < K+ < Kb+ < Cs+ tyh; foy;u esa cM+k tyk;ksftr vk;u /khjs ls xfr djrk gSA Comprehension # 1 Na CO (aq) SO2  (P) Na2CO3  (Q) ElementalS  (R) I2  (S) 2 3  4. Select the correct statement for compound (R). ;kSfxd(R)dsfy,lghdFkudkspqfu;sA (1) Compound (R) is used as antichlor. (2) Compound (Q) and sodium sulphide give compound (R) with iodine gas. (3) Compound (R) is used in photography. (4*) All of these (1);kSfxd(R)dks,UVhDyksj(antichlor)ds:iesami;ksxdjrsgSA (2);kSfxd(Q)rFk lksfM;elYQkbM]vk;ksMhuxSldslkFk;kSfxd(R)nsrsgSA (3);kSfxd(R)QksVksxzkQhesami;ksxvkrkgSA (4*)lHkhlghgSA Sol. (4) 5. Which of the following statement is false for compound (Q) ? ;kSfxd(Q)dsfy,fuEuesalsdkSulkdFkuxyrgS\ (1) With dil . H2SO4 it produces a colourless irritating gas which turns acidified K2Cr2O7 green. (2) It produces a white precipitate with barium nitrate solution which is insoluble in dilute HCl. (3) It does not decolourises the acidified KMnO4 solution (4*) (2) and (3) both (1) ruqH2SO4dslkFkfØ;kdjds,djaxghuv:fpdj¼cSpsuh½xSlmRiUudjrhgSatksvEyh;K2Cr2O7dksgjkdjnsrh gSA (2) csfj;eukbVªsVdslkFk'osrvo{ksinsrhgSatksruqHClesavfoys;gSA (3)vEyh;KMnO4foy;udksjaxghuughadjrkgSA (4*)(2)rFk (3)nksuksa 6. Oxidation state of S in all the compounds P to S ( if sulphur atoms more than one then consider the average oxidation state) are respectively. PlsS(;fnlYQjijek.kq,dlsT;knkgSrksvkSlrvkWDlhdj.kvad)lHkh;kSfxdesaSdsvkWDlhdj.kvadØe'k%gSa% (1) + 4, + 4, + 6, + 5 (2*) + 4, + 4, + 2, + 5 2 2 (3) + 4, + 4, – 2, + 5 (4)Noneofthese.buesalsdksbZugha Sol. (2) Na CO + SO H2O  NaHSO + CO NaHSO3 + Na2CO3  Na2SO3 + CO2 + H2O Na2SO3 + S  Na2S2O3 2Na2S2O3 + 2  Na2S4O6 + 2Na  1. (1) Na2S2O3 is used to remove the chlorine from the surface of fibres Na2S2O3dkmi;ksxQkbcjdhlrglsDyksjhudkseqDrdjusesadkeesaysrsgSA Na2S2O3 + Cl2 + H2O  Na2S4O6 + HCl + S (2) Na2S + Na2SO3 + I2  Na2S2O3 + 2Na (3) Unexposed AgBr forms soluble complex with hypo that is with Na2S2O3 cfU/krAgBrgkbiksadslkFkladqycukrkgSA Na2S2O3 Ag Br + Na2S2O3  NaS[Ag (S2O3)3] 2. (2) Na SO + Ba2+  BaSO  (White 'osr) + 2Na+ 2 3 3 BaSO3 + 2HCl  BaCl2 + SO2 + H2O (3) 2KMnO4 + 3H2SO4  K2SO4 + 2MnSO4 + 3H2O + 5[O] Na2SO3 + [O]  Na2SO4 3. P = (NaHSO3) O.S = + IV ; Q = (Na2SO3) O.S + IV R = (Na S O ) O.S = +II ; S = (S O 2–) O.S = + 5 2 2 3 4 6 2 Comprehension : (Q.No. 7 to 9) A research-guide instructed his two students to synthesize complex [Co(NH3)5(NO2)]Cl2 They synthesised the complexes with identical molecular formula, molar mass, geometry, conductance and spin, but they differed in colour. Based on the above facts answer the following questions. vuqPNsn% (Q.No. 7 to 9) ,dvuqla/ku&funsZ'kd]viusnksfo|kfFkZ;ksadks,dladqyla'ysf"krdjusdkfuZns'knsrkgS [Co(NH3)5(NO2)]Cl2 osnksuksafo|kFkhZlekuv.kqlw=k]eksyjnzO;eku]T;kfefr]pkydrkrFk pØ.kdslkFkladqyla'ysf"krdjrsgSijUrq;sjax esafHkUuik;sx;smDrrF;ksadsvk/kjijfuEufyf[kriz'uksadsmÙkjnhft;sA 7. The difference in colour is due to : (1) optical isomerism (2) geometrical isomerism (3*) linkage isomerism (4) nuclear isomerism jaxesafHkUurkfuEuesalsfdldkj.kgS: (1)izdkf'kdleko;rk (2)T;kferh;leko;rk (3*)fyadstleko;rk (4)ukfHkdh;leko;rk Sol. [Co(NH3)5(NO2)]Cl2 & [Co(NH3)5(ONO)]Cl2 have different color gy- [Co(NH3)5(NO2)]Cl2rFk [Co(NH3)5(ONO)]Cl2jaxksaesafoHksnj[krsgSA 8. Which of the ligands can show ambident property ? fuEuesalsdkSulkfyxs.MmHk;narqd(ambident) xq.kn'k ZldrkgS (1*) NO – (2) NH (3) H O (4) CO 2 – 2 3 2 3 Sol. In this, donor atom can be 'N' or 'O' i.e. NO –, ONO– gy- blesa'N'vFkok'O'nkrkijek.kqgksldrkgSvFk Zr~NO –,ONO– 9. Complexes synthesized can be : (1) [Co(NH3)5(NO2)]Cl2 (2) [Co(NH3)5(ONO)]Cl2 (3) [Co(NH3)5Cl2]NO2 (4*) (1) & (2) both. la'ysf"krladqygksldrsgS& (1) [Co(NH3)5(NO2)]Cl2 (2) [Co(NH3)5(ONO)]Cl2 (3) [Co(NH3)5Cl2]NO2 (4*)(1)rFk (2)nksuksa 10. Write a series of equations to show the stepwise displacement of H O ligands in [Fe(H O) ]3+ by ethylenedi- 2 2 6 amine (en) for which log K1 = 4.44 ; log K2 = 3.41 and log K3 = 2.15. What is overall formation constant for the complex [Fe(en) ]3+ ? [Fe(H O) ]3+ esabFk byhuMkbZ,ehu(en) }kjkH OdsØfedfoLFk iudksn'k Zusokyhlehdj.k sadhJs.khfyf[k;sftlds 2 6 2 fy;s logK =4.44; logK = 3.41rFkk logK = 2.15. ladqy [Fe(en) ]3+ dk lEiw.kZ laHkou fu;rkad (overall formation 1 2 3 3 constant) D;k gS ? Ans. K = 1010. Sol. [Fe(H O) ]3+ + en  [Fe(H O) en]3+ K = K 2 6 2 4 eq 1 [Fe(H O) en]3+ + en  [Fe(H O) (en) ]3+ K = K 2 4 2 2 2 eq 2 [Fe(H O) (en) ]3+ + en  [Fe (en) ]3+ K = K 2 2 2 3 eq 3 [Fe(H O) ]3+ + 3en  [Fe (en) ]3+ K = K × K × K 2 6 3 f 1 2 3 log Kf = log K1 + log K2 + log K3 = 4.44 + 3.41 +2.15 = 10  K = 1010 BooSt YoUr PreViouS ConCept 11. The number of moles of ferrous oxalate oxidised by one mole of KMnO4 is KMnO4 ds ,d eksy }kjk vkWDlhd`r fd, x, QSjl vkWDlsysV ds eksyksa dh la[;k fuEu gSa & (1) 5 2 Sol. (4) 2 (2) 5 3 (3) 5 5 (4*) 3 Equivalents of FeC2O4 = equivalents of KMnO4 x (mole) × 3 = 1 × 5 5 x = 3 Sol. (4) FeC2O4 dkrqY;kad = KMnO4 dkrqY;kad x (eksy) × 3 = 1 × 5 5 x = 3 12. How many moles of KMnO4 are needed to oxidised a mixture of 1 mole of each FeSO4 & FeC2O4 in acidic medium ? vEyh;ek/;eesaFeSO4rFkkFeC2O4 izR;sdds1eksydsfeJ.kdksvkWDlhd`rdjusdsfy,KMnO4dsfdruseksy vko';dgSa\ 4 (1*) 5 Sol. (1) (2) 5 4 (3) 3 4 5 (4) 3 Equivalents of KMnO4 = equivalent of FeSO4 + equivalent of FeC2O4 4 x × 5 = 1 × 1 + 1 × 3  x = 5 mole Sol. (1) KMnO4 dsrqY;kad=FeSO4 dsrqY;kad+FeC2O4 dsrqY;kad x × 5 = 1 × 1 + 1 × 3 4 x= 5 eksy 13. In the reaction Na S O + 4Cl + 5H O  Na SO + H SO + 8HCl the equivalent weight of Na2 S2 O3 will be (1) M/4 (2*) M/8 (3) M/1 (4) M/2 (M = molecular weight of Na2S2O3) vfHkfØ;k Na S O + 4Cl + 5H O  Na SO + H SO + 8HCl esaNa2S2O3 dkrqY;kadHkjfuEugksxkA (1) M/4 (2*) M/8 (3) M/1 (4) M/2 (M = Na2S2O3 dk vkf.od Hkkj) Sol. (2) 2 Na2 S 2 O3  6 Na2 S O4 the total change in oxidation number = 4 × 2 = 8  Sol. (2) 2 ENa S O = mol. wt. M V.f = 8 6 Na2 S 2 O3  Na2 S O4 vkWDlhdj.kvadesadqy ifjorZu=4×2=8  ENa S O = mol. wt. M V.f = 8 DAILY PRACTICE PROBLEMS (DPP) Subject : Physical/Inorg.Chemistry Date : DPP No. 44 Class : XIII Course : DPP No.2 Total Marks : 49 Max. Time : 49 min. Single choice Objective (no negative marking) Q.1 to Q.9 (3 marks 3 min.) [27, 27] Complete the following reactions (no negative marking) Q.10 (9 marks 9 min.) [9, 9] BooSt YoUr PreViouS ConCept Single choice Objective (no negative marking) Q.11 to Q.12 (3 marks 3 min.) [9, 9] Subjective Questisons (no negative marking) Q.13 (4 marks 4 min.) [4, 4] 1. Which of the following has the highest solubility in water ? fuEuesalsfdldhtyesafoys;rkvR;f/kdgksrhgS\ (1) LiOH (2) KOH (3*) CsOH (4) RbOH 2. Identify the correct statement ? (1) Sodium metal can be prepared by the electrolysis of an aqueous solution of NaCl. (2) Sodium metal can be kept under ethyl alcohol. (3) Sodium metal is insoluble in liquid NH3 at low temperature. (4*) Elemental sodium is easily oxidised. lgh dFku dh igpku dhft, \ (1) NaCldstyh;foy;udsfo|qrvi?kV~uds}kjklksfM;e/kkrqcuk;htkldrhgSA (2) lksfM;e/krqdks,Fkhy,YdksgkWyesaj[k tkrkgSA (3)fuEurkiekuijlksfM;e/k rqnzoNH3esavfoys;gSA (4*)rkfRodlksfM;evklkuhlsvkWDlhd`rgkstkrkgSA 3. Which one is used as an air purifier in spacecrafts and submarines ? (1) Anhydrous CaCl2 (2*) Potassium superoxide (3) Anhydrous Na2CO3 (4) Slaked lime vUrfj{k;kurFk iaMqfCc;ksaesafdldksok;q'kqf)dkjdds:iesaiz;qDrfd;ktkrkgS\ (1) futZy CaCl2 (2*)iksVsf'k;elqijvkWDlkbM (3) futZy Na2CO3 (4)cq>k pwuk (Slakedlime) Hint : 2KO2 + CO2  K2CO3 + 3/2O2 4. Which of the following compounds on thermal decomposition yields a basic as well as acidic oxides ? fuEuesalsfdl;kSfxddsrkih;vi?kV~uij,d{k jh;vkWDlkbMdslkFk&lkFkvEyh;vkWDlkbMHkhizkIrgksrkgS\ (1) KClO3 (2) NaNO3 (3) K2CO3 (4*) MgCO3  Hint : MgCO3  MgO + CO2 (Basic) (Acidic) 5. Which of the following statements are true about the alkali metals ? (1) All alkali-metal salts impart a characteristic colour to the Bunsen flame. (2) The correct order of increasing thermal stability of the carbonates of alkali metals is Li2CO3 < Na2CO3 < K2CO3 < Rb2CO3 < Cs2CO3 . (3) Among the alkali metals, cesium is the most reactive. (4) The reducing character of the alkali metal hydrides follow the order : LiH > NaH > KH > RbH > CsH. (1*) (1), (2) and (3) (2) (1), (3) and (4) (3) (2), (3) and (4) (4) (1), (2), (3) and (4) {kjh;/krqvksadsfy,fuEues lsdkSUlkdFkulR;gS\ (1)lHkh{k jh;/k rqvksadsyo.kcqUluTokykdks,dyk{.khdjaxiznkudjrhgSA (2){k jh;/k rqvksadsdkcksZusV~ldsrkih;LFk ;hRodklghc<+rkgqvkØeLi2CO3 NaH>KH>RbH>CsHgSA (1*) (1), (2) rFkk (3) (2) (1), (3) rFkk (4) (3) (2), (3) rFkk (4) (4) (1), (2), (3) rFkk (4) Hint : (4) Reducing nature increases down the group as their stability decreases down the group CsH > RbH > KH > NaH > LiH 6. Which of the following compounds is used as a raw material in the manufacture of sodium carbonate ? (1*) Sodium chloride (2) Sodium hydrogen carbonate (3) Sodium hydroxide (4) Slaked lime lksfM;edkcksZusVdsla'ys"k.kesafuEuesalsfdl;kSfxddksdPpsinkFkZ(rawmaterial)dhrjgiz;qDrfd;ktkrkgSA (1*)lksfM;eDyksjkbM (2)lksfM;egkbMªkstudkcksZusV (3)lksfM;egkbMªksDlkbM (4)cw>k pwuk (Slakedlime) 7. Which of the following reactions of potassium superoxide supply oxygen gas in the breathing equipments used in space and submarines ? (1) reaction of superoxide with nitrogen in the exhaled air (2) reaction of superoxide with moisture in the exhaled air (3) reaction of superoxide with carbon dioxide in the exhaled air (1) (1), (2) and (3) (2*) (2) and (3) only (3) (2) only (4) (1) and (2) only varfj{krFk iaMqfCc;ksaesafuEuesalsiksVsf'k;elqijvkWDlkbMdhdkSulhvfHkfØ;k'olu;a=kesavkWDlhtuxSldsfy,iz;qDr dhtkrhgS\ (1)fu"dkflrok;qesaukbVªkstudhlqijvkWDlkbMdslkFkvfHkfØ;kA (2)fu"dkflrok;qesauehdhlqijvkWDlkbMdslkFkvfHkfØ;kA (3)fu"dkflrok;qesadkcZuMkbZvkWDlkbMdhlqijvkWDlkbMdslkFkvfHkfØ;kA (1) (1), (2) rFkk (3) (2*) dsoy (2) rFkk (3) (3) dsoy (2) (4) dsoy (1) rFkk (2) Sol. (2) KO + 2H O  KOH + H O + 1/2O (3) 4KO + 2CO  2K CO + 3O 8. Calculate the temperature at which the R.M.S. velocity of sulphur dioxide molecules is the same as that of oxygen at 300 K - ogrkiKkrdjkstcSO2dkoxZek/;ewyosx]vkWDlhtuv.kqvksads300KijmifLFkroxZek/;ewyosxdscjkcjgksxkA (1) 600°C (2*) 600 K (3) 300 K (4) 300°C 9. Vander wall’s equation for : (1) high pressure and low temp (i) PV = RT + Pb (2) low pressure (ii) PV = RT – a/V (3) force of attraction is negligible (iii) PV = RT + a/V (3) volume of molecule is negligible (iv) [P – (a/V2)] (V – b) = RT. budsfy;sokUMjokWylehdj.kgS& (1) mPpnkcvkSjfuEurki (i) PV = RT + Pb (2) fuEunkc (ii) PV = RT – a/V (3) vkd"kZ.kdkcyux.;gS (iii) PV = RT + a/V (4) v.kqdk vk;ruux.; gS (iv) [P – (a/V2)] (V – b) = RT. (1*) (1)-(i), (2)-(ii), (3)-(i), (4)-(ii) (2) (1)-(i), (2)-(ii), (3)-(iii), (4)-(iv) (3) (1)-(iv), (2)-(iii), (3)-(ii), (4)-(i) (4) (1)-(iv), (2)-(ii), (3)-(iii). (4)-(i). COMPLETE THE FOLLOWING REACTIONS : fuEuvfHkfØ;kvksadksiw.kZdhft,% 10. (i) Reaction between acidic oxides and NaOH : vEyh;vkWDlkbMrFkkNaOHdse/;vfHkfØ;kA NaOH + NO2  ; NaOH + SO3  Ans. 2NaOH + 2NO2  NaNO2 + NaNO3 + H2O ; 2NaOH + SO3  Na2SO4 + H2O. (ii) With hot & conc. NaOH : xeZrFk lkUnzNaOHdslkFkA NaOH + Br2 NaOH + F2   Ans. 6NaOH + 3Br2 4NaOH + 2F2  5NaBr + NaBrO3 + 3H2O.  4NaF + O2 + 2H2O. (iii) Withsulphur: lYQj ds lkFkA NaOH + S  Ans. 6NaOH + 4S  2Na2S + Na2S2O3 + 3H2O. (iv) Withboron:cksjkWudslkFkA B + NaOH  Ans. 2B + 6NaOH  2Na3BO3 + 3H2 (v) Withsilicon:flfydkWu ds lkFkA NaOH + Si + H2O  Ans. 2NaOH + Si + H2O  Na2SiO3 + 2H2 (vi) Reaction with amphoteric oxides : mHk;/kehZvkWDlkbM~ldslkFkvfHkfØ;kA Ans. PbO + NaOH  PbO + 2NaOH  Na2PbO2 + H2O ; ; PbO2 + NaOH PbO2 + NaOH   Na2PbO3 + H2O. (vii) Reaction with amphoteric metals (e.g. Al, Pb, Sn, Zn etc.) : mHk;/kehZ/k rqvksa(mnk-Al,Pb,Sn,Znvkfn)dslkFkvfHkfØ;kA NaOH + H2O + Al  Ans. 4NaOH + 2H2O + 2Al  2NaAlO2 + 3H2. (viii) Reaction with salts of Cr, Ni, Fe, Mn, Cu etc., : Cr,Ni,Fe,Mn,Cuvkfn]ds yo.kds lkFkvfHkfØ;k CrCl3 + NaOH  CuCl2 + NaOH  Ans. Forminsolublehydroxides.v?kqyu'khygkbMªkWDlkbMcurkgSaA CrCl3 + 3NaOH  Cr(OH)3  (Green) + 3NaCl. CuCl2 + 2NaOH  Cu(OH)2  (bule) + 2NaCl. (ix) Reaction with salts of Hg and Ag : HgrFk Agdsyo.k sadslkFkvfHkfØ;kA HgCl2 + NaOH  AgNO3 + NaOH  ; Hg(OH)2  ; AgOH  Ans. HgCl2 + 2NaOH  Hg(OH)2  + 2NaCl ; Hg(OH)2  HgO  (yellow or brown) + H2O. 2AgNO3 + 2NaOH  2AgOH  + 2NaNO3 ; 2AgOH  Ag2O  (black) + H2O. BooSt YoUr PreViouS ConCept 11. Rate of formation of SO3 in the following reaction 2SO2 + O2  2SO3 is 80 g min–1. Hence rate of disappearance of O2 is : fuEuvfHkfØ;kesa2SO2+O22SO3,SO3dscuusdhnj80xzkefeuV–1gSvr%O2dsfoyqIrgksusdhnjD;kgksxh: (1) 32 g min-1 (2) 8 g min–1 (3) 20 g min–1 (4*) 16 g min–1 12. Statement-1 : Time taken for the completion of 75% of a st order reaction is double than its t½. Statement-2 : Time taken for completion of any fraction of a st order reaction is proportional to the extent of reaction completed. (1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1 (3*) Statement-1 is True, Statement-2 is False (4) Statement-1 is False, Statement-2 is True dFku-1: ,dizFkedksfVdhvfHkfØ;kdks75%iwjkdjusesayxkle;mldst1/2dknqxukgksrkgSA dkj.k-2: izFkedksfVdhvfHkfØ;kdsfdlhHkhHk xdksiwjkdjusesayxkle;mlHk xdslekuqikrhgksrkgSA (1) dFku&1lR; gS] dFku&2lR; gS ;dFku&2,dFku&1 dk lgh Li"Vhdj.k gSA (2)dFku&1lR; gS] dFku&2lR; gS ; dFku&2,dFku&1 dk lgh Li"Vhdj.k ugha gSA (3*)dFku&1lR; gS] dFku&2vlR; gSA (4)dFku&1vlR; gS] dFku&2lR; gSA Ans. Assertion is correct but reason is incorrect the time taken for completion of any fraction fo a Ist order reaction is a fixed maximum value for a particular reaction. dFku lgh gS fdUrq dkj.k xyr gS D;ksafd izFke dksfV dh vfHkfØ;k ds fdlh Hkh Hkkx dks iwjk djus esa yxk le; fdlh fuf'pr vfHkfØ;k ds fy;s fuf'pr vf/kdre eku gksrk gSA 13. For the reaction A  products, the following data is given for a particular run. time (min.) : 0 5 15 35 1 [A] (M–1) : 1 2 4 8 Determine the order of the reaction. A  mRikn]vfHkfØ;kdsfy,vfHkfØ;kdsvk¡dM+sfn;sx;sgSA le; (min.) : 0 5 15 35 1 [A] (M–1) : 1 2 4 8 vfHkfØ;kdhdksfVKkrdjksA Ans. 2.

Comments

Popular posts from this blog

PHYSICS-15-10- 11th (PQRS) SOLUTION

8-Circular Motion

4. THEORY-Current Electrictricity